
Fast approximation of matrix coherence and statistical leverage

Petros Drineas drinep@cs.rpi.edu

Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Malik Magdon-Ismail magdon@cs.rpi.edu

Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

Michael W. Mahoney mmahoney@cs.stanford.edu

Dept. of Mathematics, Stanford University, Stanford, CA 94305 USA

David P. Woodruff dpwoodru@us.ibm.com

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 USA

Abstract

The statistical leverage scores of a data ma-
trix are the squared row-norms of any matrix
whose columns are obtained by orthogonal-
izing the columns of the data matrix; and,
the coherence is the largest leverage score.
These quantities play an important role in
several machine learning algorithms because
they capture the key structural nonunifor-
mity of the data matrix that must be dealt
with in developing efficient randomized algo-
rithms. Our main result is a randomized al-
gorithm that takes as input an arbitrary n×d
matrix A, with n ≫ d, and returns, as out-
put, relative-error approximations to all n
of the statistical leverage scores. The pro-
posed algorithm runs in O(nd logn) time, as
opposed to the O(nd2) time required by the
näıve algorithm that involves computing an
orthogonal basis for the range of A. This re-
solves an open question from (Drineas et al.,
2006) and (Mohri & Talwalkar, 2011); and
our result leads to immediate improvements
in coreset-based ℓ2-regression, the estimation
of the coherence of a matrix, and several re-
lated low-rank matrix problems. Interest-
ingly, to achieve our result we judiciously ap-
ply random projections on both sides of A.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

The concept of statistical leverage measures the ex-
tent to which the singular vectors of a matrix are
correlated with the standard basis and as such it
has found usefulness recently in large-scale data anal-
ysis and in the analysis of randomized matrix al-
gorithms (Mahoney & Drineas, 2009; Drineas et al.,
2008). A related notion is that of matrix coherence,
which has been of interest in recently popular problems
such as matrix completion and Nyström-based low-
rank matrix approximation (Candes & Recht, 2009;
Talwalkar & Rostamizadeh, 2010). Statistical lever-
age scores have a long history in statistical data anal-
ysis, where they have been used for outlier detection
in regression diagnostics (Hoaglin & Welsch, 1978;
Chatterjee & Hadi, 1986). Statistical leverage scores
have also proved crucial recently in the development
of improved worst-case randomized matrix algorithms
that are also amenable to high-quality numerical im-
plementation and that are useful to domain scien-
tists (Drineas et al., 2008; Mahoney & Drineas, 2009;
Sarlós, 2006; Drineas et al., 2010); see (Mahoney,
2011) for a detailed discussion. The näıve and best
previously existing algorithm to compute these scores
would compute an orthogonal basis for the dominant
part of the spectrum of A, e.g., the basis provided by
the Singular Value Decomposition (SVD) or a basis
provided by a QR decomposition, and then use that
basis to compute the leverage scores, by taking the
norms of the rows.

We present a randomized algorithm to compute
relative-error approximations to every statistical lever-
age score in time qualitatively faster than the time re-
quired to compute an orthogonal basis. For the case

Fast approximation of matrix coherence and statistical leverage

of an arbitrary n× d matrix A, with n≫ d, our main
algorithm runs in O(nd log n/ϵ2) time (under assump-
tions on the precise values of n and d, see Theorem 1
for an exact statement). This is the first algorithm to
break the O(nd2) barrier required by the näıve algo-
rithm, and provide accuracy to within relative error.
As a corollary, our algorithm provides a relative-error
approximation to the coherence of an arbitrary ma-
trix in the same time. In addition, we discuss sev-
eral practically-important extensions of the basic idea
underlying our main algorithm: computing so-called
cross leverage scores; computing leverage scores for
“fat” matrices with n ≈ d with respect to a low-rank
parameter k; and, computing leverage scores in data
streaming environments.

1.1. Overview and definitions

We start with the following definition.

Definition 1. Given an arbitrary n × d matrix A,
with n > d, let U denote the n × d matrix consist-
ing of the d left singular vectors of A, and let U(i)

denote the i-th row of the matrix U as a row vector.
Then, the statistical leverage scores of the rows of A

are given by ℓi =
∥∥U(i)

∥∥2
2
, for i ∈ {1, . . . , n}; the co-

herence γ of the rows of A is γ = maxi∈{1,...,n} ℓi, i.e.,
it is the largest statistical leverage score of A; and the
(i, j)-cross-leverage scores cij are cij =

⟨
U(i), U(j)

⟩
,

i.e., they are the dot products between the ith row and
the jth row of U .

Although we have defined these quantities in terms
of a particular basis, they clearly do not depend on
that particular basis, but only on the space spanned
by that basis. To see this, let PA denote the projec-
tion matrix onto the span of the columns of A. Then,

ℓi =
∥∥U(i)

∥∥2
2
=

(
UUT

)
ii

= (PA)ii . That is, the sta-
tistical leverage scores of a matrix A are equal to the
diagonal elements of the projection matrix onto the
span of its columns. Similarly, the (i, j)-cross-leverage
scores are equal to the off-diagonal elements of this
projection matrix, i.e., cij = (PA)ij =

⟨
U(i), U(j)

⟩
.

Clearly, O(nd2) time suffices to compute all the statis-
tical leverage scores exactly: simply perform the SVD
or compute a QR decomposition of A in order to ob-
tain any orthogonal basis for the range of A and then
compute the Euclidean norm of the rows of the result-
ing matrix. Thus, in this paper, we are interested in
algorithms that run in o(nd2) time.

1.2. Our main result

Our main result is a randomized algorithm for com-
puting relative-error approximations to every statisti-
cal leverage score, as well as an additive-error approx-

imation to all of the large cross-leverage scores, of an
arbitrary n × d matrix, with n ≫ d, in time qualita-
tively faster than the time required to compute an or-
thogonal basis for the range of that matrix. Our main
algorithm for computing approximations to the statis-
tical leverage scores (see Algorithm 1 in Section 3) will
amount to constructing a “randomized sketch” of the
input matrix and then computing the Euclidean norms
of the rows of that sketch. This sketch can also be used
to compute approximations to the large cross-leverage
scores (see Algorithm 2 of Section 3).

The following is our main result for Algorithm 1.

Theorem 1. Let A be a full-rank n × d ma-
trix, with n ≫ d; let ϵ ∈ (0, 1/2] be an error
parameter; and recall the definition of the statis-
tical leverage scores ℓi from Definition 1. Then,
there exists a randomized algorithm (Algorithm 1
of Section 3 below) that returns values ℓ̃i, for all
i ∈ {1, . . . , n}, such that with probability at least 0.8,∣∣∣ℓi − ℓ̃i

∣∣∣ ≤ ϵℓi holds for all i ∈ {1, . . . , n}. Assuming

d ≤ n ≤ ed, the running time of the algorithm is
O
(
nd ln

(
dϵ−1

)
+ ndϵ−2 lnn+ d3ϵ−2 (lnn)

(
ln

(
dϵ−1

)))
.

Algorithm 1 provides a relative-error approximation
to all of the statistical leverage scores ℓi of A and,
assuming d ln d = o

(
n

lnn

)
, lnn = o (d), and treating ϵ

as a constant, its running time is o(nd2), as desired.
As a corollary, the largest leverage score (and thus
the coherence) is approximated to relative-error in the
o(nd2) time.

The following is our main result for Algorithm 2.

Theorem 2. Let A be a full-rank n × d matrix, with
n ≫ d; let ϵ ∈ (0, 1/2] be an error parameter; let κ
be a parameter; and recall the definition of the cross-
leverage scores cij from Definition 1. Then, there ex-
ists a randomized algorithm (Algorithm 2 of Section 3
below) that returns the pairs {(i, j)} together with esti-
mates {c̃ij} such that, with probability at least 0.8, (1)

If c2ij ≥
d

κ
+ 12ϵℓiℓj, then (i, j) is returned; if (i, j) is

returned, then c2ij ≥
d

κ
−30ϵℓiℓj. (2) For all pairs (i, j)

that are returned, c̃2ij − 30ϵℓiℓj ≤ c2ij ≤ c̃2ij + 12ϵℓiℓj .

This algorithm runs in O(ϵ−2n lnn+ϵ−3κd ln2 n) time.

Note that by setting κ = n lnn, we can compute all
the “large” cross-leverage scores, i.e., those satisfying
c2ij ≥ d

n lnn , to within additive-error in O
(
nd ln3 n

)
time (treating ϵ as a constant). If ln3 n = o (d) the
overall running time is o(nd2), as desired.

Due to space limitations, numerous details of our anal-
ysis are omitted; a full presentation, including full de-

Fast approximation of matrix coherence and statistical leverage

tails of the proofs, can be found in the technical report
version of this paper (Drineas et al., 2011).

1.3. Significance and related work

Significance in theoretical computer science.
The statistical leverage scores define the key struc-
tural nonuniformity that must be dealt with (i.e.,
either rapidly approximated or rapidly uniformized
at the preprocessing step) in developing fast ran-
domized algorithms for matrix problems such as
least-squares regression (Sarlós, 2006; Drineas et al.,
2010) and low-rank matrix approximation (Sarlós,
2006; Drineas et al., 2008; Mahoney & Drineas, 2009;
Boutsidis et al., 2009). Roughly, the best random
sampling algorithms use these scores (or the general-
ized leverage scores relative to the best rank-k approx-
imation to A) as an importance sampling distribution
to sample with respect to. On the other hand, the best
random projection algorithms rotate to a basis where
these scores are approximately uniform and thus in
which uniform sampling is appropriate. See (Mahoney,
2011) for a detailed discussion.

Applications in statistics. The statistical leverage
scores equal the diagonal elements of the so-called “hat
matrix” (Hoaglin & Welsch, 1978; Chatterjee & Hadi,
1986). As such, they have a natural statistical inter-
pretation in terms of the “leverage” or “influence” as-
sociated with each of the data points. Historically,
these quantities have been widely-used for outlier iden-
tification in diagnostic regression analysis.

Applications in machine learning. Matrix coher-
ence arises in many other applications. For example,
(Candes & Recht, 2009) is interested in the problem
of matrix completion; (Talwalkar & Rostamizadeh,
2010) is interested in Nyström-based low-rank matrix
approximation; (Mohri & Talwalkar, 2011) explicitly
ask the question of whether matrix coherence be effi-
ciently and accurately estimated—and thus our main
result provides a positive answer to their question.
(In other applications, the largest cross-leverage score
is called the coherence (Tropp, 2004; Mougeot et al.);
thus our results also provide a bound for this quantity.)

2. Linear algebra and fast projections

2.1. Basic linear algebra and notation

Let [n] denote the set of integers {1, 2, . . . , n}. For any
matrix A ∈ Rn×d, let A(i), i ∈ [n], denote the i-th row

of A as a row vector, and let A(j), j ∈ [d] denote the

j-th column of A as a column vector. Let ∥A∥2F =∑n
i=1

∑d
j=1 A

2
ij denote the square of the Frobenius

norm of A, and let ∥A∥2 = sup ∥x∥2=1 ∥Ax∥2 de-

note the spectral norm of A. Relatedly, for any vector
x ∈ Rn, its Euclidean norm (or ℓ2-norm) is the square
root of the sum of the squares of its elements. The dot
product between two vectors x, y ∈ Rn will be denoted
⟨x, y⟩, or alternatively as xT y. Finally, let ei ∈ Rn, for
all i ∈ [n], denote the standard basis vectors for Rn

and let In denote the n× n identity matrix.

Let the rank of A be ρ ≤ min{n, d}, in which case the
SVD of A is denoted by A = UΣV T , where U ∈ Rn×ρ,
Σ ∈ Rρ×ρ, and V ∈ Rd×ρ. (For a general matrix
X, we will write X = UXΣXV T

X .) Let σi(A), i ∈ [ρ]
denote the i-th singular value of A, and let σmax(A)
and σmin(A) denote the maximum and minimum sin-
gular values of A, respectively. The Moore-Penrose
pseudoinverse of A is the d × n matrix defined by
A† = V Σ−1UT .

2.2. The Fast JL Transform (FJLT)

Given ϵ > 0 and a set of points x1, . . . , xn with
xi ∈ Rd, a ϵ-Johnson-Lindenstrauss Transform (ϵ-
JLT), denoted Π ∈ Rr×d, is a projection of the points
into Rr such that

(1− ϵ)∥xi∥22 ≤ ∥Πxi∥22 ≤ (1 + ϵ)∥xi∥22. (1)

To construct an ϵ-JLT with high probability, sim-
ply choose every entry of Π independently, equal to
±
√
3/r with probability 1/6 each and zero otherwise

(with probability 2/3) (Achlioptas, 2003). Let ΠJLT

be a matrix drawn from such a distribution over r× d
matrices. Then, the following lemma holds.

Lemma 1 (Theorem 1.1 of (Achlioptas, 2003)). Let
x1, . . . , xn be an arbitrary (but fixed) set of points,
where xi ∈ Rd and let 0 < ϵ ≤ 1/2 be an accuracy
parameter. If r ≥ 1

ϵ2

(
12 lnn+ 6 ln 1

δ

)
then, with prob-

ability at least 1− δ, ΠJLT ∈ Rr×d is an ϵ-JLT .

For our main results, we will also need a stronger
requirement than the simple ϵ-JLT and so we will
use a version of the Fast Johnson-Lindenstrauss
Transform (FJLT), which was originally introduced
in (Ailon & Chazelle, 2009). Consider an orthogonal
matrix U ∈ Rn×d, viewed as d vectors in Rn. A FJLT
projects the vectors from Rn to Rr, while preserv-
ing the orthogonality of U ; moreover, it does so very
quickly. Specifically, given ϵ > 0, Π ∈ Rr×n is an ϵ-
FJLT for U if:

∥∥Id − UTΠTΠU
∥∥
2
≤ ϵ; and given any

X ∈ Rn×d, the matrix product ΠX can be computed
in O(nd ln r) time. The next lemma follows from the
definition of an ϵ-FJLT and its proof can be found
in (Drineas et al., 2006; 2010).

Lemma 2. Let A by any matrix in Rn×d with n≪ d
and rank(A) = d. Let the SVD of A be A = UΣV T ,

Fast approximation of matrix coherence and statistical leverage

let Π be an ϵ-FJLT for U (with 0 < ϵ ≤ 1/2) and let
Ψ = ΠU = UΨΣΨV

T
Ψ . Then, all the following hold:

rank(ΠA) = rank(ΠU) = rank(U) = rank(A),

(2)∥∥I − Σ−2
Ψ

∥∥
2
≤ ϵ/(1− ϵ), and (3)

(ΠA)† = V Σ−1(ΠU)†. (4)

2.3. The Subsampled Randomized Hadamard
Transform (SRHT)

One can use a Randomized Hadamard Transform
(RHT) to construct, with high probability, an ϵ-FJLT.
Our main algorithm will use this efficient construction
in a crucial way. Recall that the (unnormalized) n×n
matrix of the Hadamard transform Ĥn is defined re-

cursively by Ĥ2n =

[
Ĥn Ĥn

Ĥn −Ĥn

]
, with Ĥ1 = 1. The

n × n normalized matrix of the Hadamard transform
is equal to Hn = Ĥn/

√
n. From now on, for simplic-

ity and without loss of generality, we assume that n
is a power of 2 and we will suppress n and just write
H. Let D ∈ Rn×n be a random diagonal matrix with
independent diagonal entries Dii = +1 with proba-
bility 1/2 and Dii = −1 with probability 1/2. The
product HD is a RHT and it has three useful proper-
ties. First, when applied to a vector, it “spreads out”
its energy. Second, computing the product HDx for
any vector x ∈ Rn takes O(n log2 n) time. Third, if
we only need to access r elements in the transformed
vector, then those r elements can be computed in
O(n log2 r) time (Ailon & Liberty, 2008). The Sub-
sampled Randomized Hadamard Transform (SRHT)
randomly samples (according to the uniform distribu-
tion) a set of r rows of a RHT.

Using the sampling matrix formalism described previ-
ously (Drineas et al., 2006; 2008; 2010), we will rep-
resent the operation of randomly sampling r rows of
an n × d matrix A using an r × n linear sampling
operator ST . Let the matrix ΠFJLT = STHD be
generated using the SRHT. The most important prop-
erty about the distribution ΠFJLT is that if r is large
enough, then, with high probability, ΠFJLT generates
an ϵ-FJLT. We summarize this discussion in the fol-
lowing lemma (which is essentially a combination of
Lemmas 3 and 4 from (Drineas et al., 2010), restated
to fit our notation).

Lemma 3. Let ΠFJLT ∈ Rr×n be generated using the
SRHT as described above and let U ∈ Rn×d (n ≫ d)
be an (arbitrary but fixed) orthogonal matrix. If r ≥
142d ln(40nd)

ϵ2 ln
(

302d ln(40nd)
ϵ2

)
, then, with probability at

least 0.9, ΠFJLT is an ϵ-FJLT for U .

3. Our main algorithmic results

3.1. Outline of our basic approach

Recall that our first goal is to approximate, for all
i ∈ [n], the quantities

ℓi =
∥∥U(i)

∥∥2
2
=

∥∥eTi U∥∥2
2
, (5)

where ei is a standard basis vector. The hard part
of computing the scores ℓi according to Eqn. (5) is
computing an orthogonal matrix U spanning the range
of A, which takes O(nd2) time. Since UUT = AA†, it
follows that

ℓi =
∥∥eTi UUT

∥∥2
2
=

∥∥eTi AA†∥∥2
2
=

∥∥(AA†)(i)
∥∥2
2
, (6)

where the first equality follows from the orthogonality
of (the columns of) U . The hard part of computing
the scores ℓi according to Eqn. (6) is two-fold: first,
computing the pseudoinverse; and second, performing
the matrix-matrix multiplication of A and A†. Both
of these procedures take O(nd2) time. As we will see,
we can get around both of these bottlenecks by the ju-
dicious application of random projections to Eqn. (6).

To get around the bottleneck of O(nd2) time due to
computing A† in Eqn. (6), we will compute the pseu-
doinverse of a “smaller” matrix that approximates A.
A necessary condition for such a smaller matrix is that
it preserves rank. So, näıve ideas such as uniformly
sampling r1 ≪ n rows from A and computing the pseu-
doinverse of this sampled matrix will not work well for
an arbitrary A. For example, this idea will fail (with
high probability) to return a meaningful approxima-
tion for matrices consisting of n−1 identical rows and
a single row with a nonzero component in the direction
perpendicular to that the identical rows; finding that
“outlying” row is crucial to obtaining a relative-error
approximation. This is where the SRHT enters, since
it preserves important structures of A, in particular
its rank, by first rotating A to a random basis and
then uniformly sampling rows from the rotated ma-
trix (see (Drineas et al., 2010) for more details). More
formally, recall that the SVD of A is UΣV T and let
Π1 ∈ Rr1×n be an ϵ-FJLT for U (using, for example,
the SRHT of Lemma 3 with the appropriate choice for
r1). One could approximate the ℓi’s of Eqn. (6) by

ℓ̂i =
∥∥∥eTi A (Π1A)

†
∥∥∥2
2
, (7)

where we approximated the n×dmatrix A by the r1×d
matrix Π1A. Computing A (Π1A)

†
in this way takes

O (ndr1) time, which is not efficient because r1 > d
(from Lemma 3).

To get around this bottleneck, recall that we only
need the Euclidean norms of the rows of the matrix

Fast approximation of matrix coherence and statistical leverage

Algorithm 1 Approximating the (diagonal) statisti-
cal leverage scores ℓi.

Input: A ∈ Rn×d (with SVD A = UΣV T), error
parameter ϵ ∈ (0, 1/2].

Output: ℓ̃i, i ∈ [n].

1. Construct Π1 ∈ Rr1×n to be an ϵ-FJLT for U ,
using Lemma 3 with r1 = Ω

(
d lnn
ϵ2 ln

(
d lnn
ϵ2

))
.

2. Compute Π1A ∈ Rr1×d and its SVD, Π1A =
UΠ1AΣΠ1AV

T
Π1A

. Let R−1 = VΠ1AΣ
−1
Π1A
∈ Rd×d.

(Alternatively, R could be computed by a QR fac-
torization of Π1A.)

3. View the normalized rows of AR−1 ∈ Rn×d as
n vectors in Rd, and construct Π2 ∈ Rd×r2 to
be an ϵ-JLT for n2 vectors (the aforementioned
n vectors and their n2 − n pairwise sums), using
Lemma 1 with r2 = O

(
ϵ−2 lnn

)
.

4. Construct the matrix product Ω = AR−1Π2.

5. ∀i ∈ [n] compute and return ℓ̃i =
∥∥Ω(i)

∥∥2
2
.

A (Π1A)
† ∈ Rn×r1 . Thus, we can further reduce the

dimensionality of this matrix by using an ϵ-JLT to re-
duce the dimension r1 = Ω(d) to r2 = O(lnn). Specif-
ically, let ΠT

2 ∈ Rr2×r1 be an ϵ-JLT for the rows of

A (Π1A)
†
(viewed as n vectors in Rr1) and consider

the matrix Ω = A (Π1A)
†
Π2. This n × r2 matrix Ω

may be viewed as our “randomized sketch” of the rows
of AA†. Then, we can compute and return

ℓ̃i =
∥∥∥eTi A (Π1A)

†
Π2

∥∥∥2
2
, (8)

for each i ∈ [n], which is essentially what Algorithm 1

does. Not surprisingly, the sketch A (Π1A)
†
Π2 can be

used in other ways: for example, by considering the dot
product between two different rows of this randomized
sketching matrix Algorithm 2 approximates the large
cross-leverage scores of A.

3.2. Approximating all the leverage scores

Our first main result is Algorithm 1, which takes as
input an n × d matrix A and an error parameter
ϵ ∈ (0, 1/2], and returns as output numbers ℓ̃i, i ∈ [n].

Although the basic idea to approximate
∥∥(AA†)(i)

∥∥2
was described in the previous section, we can im-
prove the efficiency of our approach by avoiding the
full sketch of the pseudoinverse. In particular, let
Â = Π1A and let its SVD be Â = UÂΣÂV

T
Â
. Let

R−1 = VÂΣ
−1

Â
and note that R−1 ∈ Rd×d is an or-

thogonalizer for Â since UÂ = ÂR−1 is an orthogonal
matrix. In addition, note that AR−1 is approximately
orthogonal. Thus, we can compute AR−1 and use it
as an approximate orthogonal basis for A and then
compute ℓ̂i as the squared row-norms of AR−1. The
next lemma states that this is exactly what our main
algorithm does.

Lemma 4. Let R−1 be such that Q = Π1AR−1 is an
orthogonal matrix with rank(Q) = rank(Π1A). Then,∥∥(AR−1)(i)

∥∥2
2
= ℓ̂i.

3.3. Approximating large cross-leverage scores

By combining Lemmas 6 and 7 (in Section 4.1 below)
with the triangle inequality, one immediately obtains
the following lemma.

Lemma 5. Let Ω be either the sketching matrix con-
structed by Algorithm 1, i.e., Ω = AR−1Π2, or Ω =
A (Π1A)

†
Π2 as described in Section 3.1. Then, the

pairwise dot-products of the rows of Ω are additive-
error approximations to the leverage scores and
cross-leverage scores:

∣∣⟨U(i), U(j)⟩ − ⟨Ω(i),Ω(j)⟩
∣∣ ≤

3ϵ
1−ϵ

∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2
.

That is, if one were interested in obtaining an approx-
imation to all the cross-leverage scores to within ad-
ditive error (and thus the diagonal statistical lever-
age scores to relative-error), then the algorithm which
first computes Ω followed by all the pairwise inner
products achieves this in time T (Ω)+O

(
n2r2

)
, where

T (Ω) is the time to compute Ω from Section 3.2 and
r2 = O(ϵ−2 lnn). The challenge is to avoid the n2

computational complexity and this can be done if one
is interested only in the large cross-leverage scores.

Our second main result is provided by Algorithms 2
and 3. Algorithm 2 takes as input an n × d matrix
A, a parameter κ > 1, and an error parameter ϵ ∈
(0, 1/2], and returns as output a subset of [n]× [n] and
estimates c̃ij satisfying Theorem 2. The first step of
the algorithm is to compute the matrix Ω = AR−1Π2

constructed by Algorithm 1. Then, the algorithm calls
Algorithm 3 as a subroutine to compute “heavy hitter”
pairs of rows from a matrix.

4. Proofs of our main theorems

4.1. Proof of Theorem 1

We condition all our analysis on the events that Π1 ∈
Rr1×n is an ϵ-FJLT for U and Π2 ∈ Rr1×r2 is an ϵ-
JLT for n2 points in Rr1 . Define ûi = eTi A(Π1A)

† and

ũi = eTi A(Π1A)†Π2. Then, ℓ̂i = ∥ûi∥22 and ℓ̃i = ∥ũi∥22.
The proof will follow from the following two lemmas.

Fast approximation of matrix coherence and statistical leverage

Algorithm 2 Approximating the large (off-diagonal)
cross-leverage scores cij .

Input: A ∈ Rn×d and parameters κ > 1, ϵ ∈ (0, 1/2].

Output: The set H consisting of pairs (i, j) together
with estimates c̃ij satisfying Theorem 2.

1. Compute the n × r2 matrix Ω = AR−1Π2 from
Algorithm 1.

2. Use Algorithm 3 with inputs Ω and κ′ = κ(1 +
30dϵ) to obtain the set H containing all the κ′-
heavy pairs of Ω.

3. Return the pairs in H as the κ-heavy pairs of A.

Lemma 6. For i, j ∈ [n],∣∣⟨U(i), U(j)⟩ − ⟨ûi, ûj⟩
∣∣ ≤ ϵ

1− ϵ

∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2
. (9)

Lemma 7. For i, j ∈ [n],

|⟨ûi, ûj⟩ − ⟨ũi, ũj⟩| ≤ 2ϵ∥ûi∥2∥ûj∥2. (10)

Lemma 6 states that ⟨ûi, ûj⟩ is an additive error ap-
proximation to all the cross-leverage scores (i ̸= j)
and a relative error approximation for the diagonals
(i = j). Similarly, Lemma 7 shows that these cross-
leverage scores are preserved by Π2. Indeed, with
i = j, from Lemma 6 we have |ℓ̂i − ℓi| ≤ ϵ

1−ϵℓi, and

from Lemma 7 we have |ℓ̂i − ℓ̃i| ≤ 2ϵℓ̂i. Using the
triangle inequality and ϵ ≤ 1/2:∣∣∣ℓi − ℓ̃i

∣∣∣ =
∣∣∣ℓi − ℓ̂i + ℓ̂i − ℓ̃i

∣∣∣ ≤ ∣∣∣ℓi − ℓ̂i

∣∣∣+ ∣∣∣ℓ̂i − ℓ̃i

∣∣∣
≤

(
ϵ

1− ϵ
+ 2ϵ

)
ℓi ≤ 4ϵℓi.

The theorem follows after rescaling ϵ.

Running Times. By Lemma 4, we can use
VΠ1AΣ

−1
Π1

instead of (Π1A)
† and obtain the same

estimates. Since Π1 is an ϵ-FJLT, the product Π1A
can be computed in O(nd ln r1) while its SVD takes an
additional O(r1d

2) time to return VΠ1AΣ
−1
Π1
∈ Rd×d.

Since Π2 ∈ Rd×r2 , we obtain VΠ1AΣ
−1
Π1

Π2 ∈ Rd×r2 in

an additional O(r2d
2) time. Finally, premultiplying by

A takes O(ndr2) time, and computing and returning
the squared row-norms of Ω = AVΠ1AΣ

−1
Π1

Π2 ∈ Rn×r2

takes O (nr2) time. So, the total running time
is the sum of all these operations, which is
O(nd ln r1 + ndr2 + r1d

2 + r2d
2). For our imple-

mentations of the ϵ-JLTs and ϵ-FJLTs (δ = 0.1), r1 =
O
(
ϵ−2d (lnn)

(
ln
(
ϵ−2d lnn

)))
and r2 = O(ϵ−2 lnn).

Algorithm 3 Computing heavy pairs of a matrix.

Input: X ∈ Rn×r with rows x1, . . . , xn and a param-
eter κ > 1.

Output: H = {(i, j), c̃ij} containing all heavy (un-
ordered) pairs. The pair (i, j), c̃ij ∈ H if and only if

c̃2ij = ⟨xi, xj⟩2 ≥
∥∥XTX

∥∥2
F
/κ.

1: Compute the norms ∥xi∥2 and sort the rows ac-
cording to norm, so that ∥x1∥2 ≤ · · · ≤ ∥xn∥2.

2: H ← {}; z1 ← n; z2 ← 1.
3: while z2 ≤ z1 do

4: while ∥xz1∥
2
2∥xz2∥

2
2 <

∥∥XTX
∥∥2
F
/κ do

5: z2 ← z2 + 1.
6: if z2 > z1 then
7: return H.
8: end if
9: end while

10: for each pair (i, j) where i = z1 and j ∈
{z2, z2 + 1, . . . , z1} do

11: c̃2ij = ⟨xi, xj⟩2.
12: if c̃2ij ≥

∥∥XTX
∥∥2
F
then

13: add (i, j) and c̃ij to H.
14: end if
15: z1 ← z1 − 1.
16: end for
17: end while
18: return H.

It follows that the asymptotic running time is
O
(
nd ln

(
dϵ−1

)
+ ndϵ−2 lnn+ d3ϵ−2 (lnn)

(
ln

(
dϵ−1

)))
.

To simplify, suppose that d ≤ n ≤ ed and treat ϵ as
a constant. Then, the asymptotic running time is
O
(
nd lnn+ d3 (lnn) (ln d)

)
.

4.2. Proof of Theorem 2

We first construct an algorithm to estimate the large
inner products among the rows of an arbitrary matrix
X ∈ Rn×r with n > r. This general algorithm will
be applied to the matrix Ω = AVΠ1AΣ

−1
Π1A

Π2. Let
x1, . . . , xn denote the rows of X; for a given κ > 1, the

pair (i, j) is heavy if ⟨xi, xj⟩2 ≥ 1
κ

∥∥XTX
∥∥2
F
. By the

Cauchy-Schwarz inequality, this implies that

∥xi∥22∥xj∥22 ≥
1

κ

∥∥XTX
∥∥2
F
, (11)

so it suffices to find all the pairs (i, j) for which
Eqn. (11) holds. We will call such pairs norm-heavy.
Let s be the number of norm-heavy pairs satisfying
Eqn. (11). We first bound the number of such pairs.

Lemma 8. Using the above notation, s ≤ κr.

Algorithm 3 starts by computing the norms ∥xi∥22 for

Fast approximation of matrix coherence and statistical leverage

all i ∈ [n] and sorting them (in O (nr + n lnn) time) so
that we can assume that ∥x1∥2 ≤ · · · ≤ ∥xn∥2. Then,
we initialize the set of norm-heavy pairs to H = {}
and we also initialize two pointers z1 = n and z2 = 1.
The basic loop in the algorithm checks if z2 > z1 and
stops if that is the case. Otherwise, we increment z2
to the first pair (z1, z2) that is norm-heavy. If none of
pairs are norm heavy (i.e., z2 > z1 occurs), then we
stop and output H; otherwise, we add (z1, z2), (z1, z2+
1), . . . , (z1, z1) toH. This basic loop computes all pairs
(z1, i) with i ≤ z1 that are norm-heavy. Next, we
decrease z1 by one and if z1 < z2 we stop and output
H; otherwise, we repeat the basic loop. Note that in
the basic loop z2 is always incremented. This occurs
whenever the pair (z1, z2) is not norm-heavy. Since
z2 can be incremented at most n times, the number
of times we check whether a pair is norm-heavy and
fail is at most n. Every successful check results in the
addition of at least one norm-heavy pair into H and
thus the number of times we check if a pair is norm
heavy (a constant-time operation) is at most n+s. The
number of pair additions into H is exactly s and thus
the total running time is O(nr+n lnn+s). Finally, we
must check each norm-heavy pair to verify whether or
not it is actually heavy by computing s inner products
vectors in Rr; this can be done in O(sr) time. Using
s ≤ κr we get the following lemma.

Lemma 9. Algorithm 3 returns H including all the
heavy pairs of X in O(nr + κr2 + n lnn) time.

To complete the proof, we apply Algorithm 3 with
Ω = AVΠ1AΣ

−1
Π1A

Π2 ∈ Rn×r2 , where r2 = O(ϵ−2 lnn).
Let ũ1, . . . , ũn denote the rows of Ω and recall that
A = UΣV T . Let u1, . . . , un denote the rows of U ;
then, from Lemma 5,

⟨ui, uj⟩ −∆ ≤ ⟨ũi, ũj⟩ ≤ ⟨ui, uj⟩+∆, (12)

where ∆ = 3ϵ
1−ϵ∥ui∥∥uj∥. Given ϵ, κ, assume that for

the pair of vectors ui and uj

⟨ui, uj⟩2 ≥
1

κ

∥∥UTU
∥∥2
F
+ 12∆ =

d

κ
+ 12∆,

where ∆ = ϵ∥ui∥2∥uj∥2, and where the last equality

follows from
∥∥UTU

∥∥2
F

= ∥Id∥2F = d. By Eqn. (12),
after squaring and using ϵ < 0.5,

⟨ui, uj⟩2 − 12∆ ≤ ⟨ũi, ũj⟩2 ≤ ⟨ui, uj⟩2 + 30∆, (13)

where ∆ = ϵ∥ui∥2∥uj∥2. Thus, ⟨ũi, ũj⟩2 ≥ d/κ and

summing Eqn. (13) over all i, j we get
∥∥ΩTΩ

∥∥2
F
≤

d+ 30ϵd2, or, equivalently, d ≥ ∥
ΩTΩ∥2

F

1+30dϵ . We conclude

that ⟨ui, uj⟩2 ≥ d
κ + 12ϵ∥ui∥2∥uj∥2 implies

⟨ũi, ũj⟩2 ≥
d

κ
≥

∥∥ΩTΩ
∥∥2
F

κ(1 + 30dϵ)
. (14)

By construction, Algorithm 3 is invoked with κ′ =

κ
∥∥ΩTΩ

∥∥2
F
/d and thus it finds all pairs with ⟨ũi, ũj⟩2 ≥∥∥ΩTΩ

∥∥2
F
/κ′ = d/κ. This set contains all pairs

for which ⟨ui, uj⟩2 ≥ d
κ + 12ϵ∥ui∥2∥uj∥2. Further,

since every pair returned satisfies ⟨ũi, ũj⟩2 ≥ d/κ, by
Eqn. (13), cij ≥ d/κ − 30ϵℓiℓj . This proves the first
claim of the Theorem; the second claim follows analo-
gously from Eqn. (13).

Using Lemma 9, the running time of our approach is
O
(
nr2 + κ′r22 + n lnn

)
. Since r2 = O

(
ϵ−2 lnn

)
, and,

by Eqn. (14), κ′ = κ
∥∥ΩTΩ

∥∥2
F
/d ≤ κ(1 + 30dϵ), the

overall running time is O
(
ϵ−2n lnn+ ϵ−3κd ln2 n

)
.

5. Extension to general matrices and
streaming environments

Our main result can be extended to the computation
of the statistical leverage scores for general “fat” ma-
trices, i.e., matrices A ∈ Rn×d, where both n and d are
large, e.g., d = n or d = Θ(n), when a rank parameter
k ≪ min{n, d} is specified. In this case, we wish to ob-

tain the statistical leverage scores ℓi =
∥∥(Uk)(i)

∥∥2
2
for

Ak = UkΣkV
T
k , the best rank-k approximation to A.

As stated, this is an ill-posed problem; and thus the
main technical challenge is to deal with this posedness
issue. To do so, we note that the leverage scores are
used to approximate the matrix in some way; and thus
we only care that the estimated leverage scores are
a good approximation to the leverage scores of some
good low-rank approximation to A. Thus, we can de-
fine the set of matrices that are good approximations,
e.g., with respect to the spectral norm or Frobenius
norm, to the best rank k approximation to A, and
we can prove that we can efficiently approximate the
leverage scores for some matrix in this set.

Our main result can also be extended to estimate the
leverage scores and related statistics in data stream en-
vironments. In this context, one is interested in com-
puting statistics of the data stream while making one
pass over the data from external storage and using only
a small amount of additional space. For an n×dmatrix
A, with n≫ d, small additional space means that the
space complexity only depends logarithmically on the
high dimension n and polynomially on the low dimen-
sion d. The general strategy behind our algorithms is
as follows. First, as the data streams by, compute TA,
for an appropriate problem-dependent linear sketching
matrix T , and also compute ΠA, for a random projec-
tion matrix Π. Second, after the first pass over the
data, compute the matrix R−1, as described in Algo-
rithm 1, corresponding to ΠA (or compute the pseu-

Fast approximation of matrix coherence and statistical leverage

doinverse of ΠA or the R matrix from any other QR
decomposition of A). Third, compute TAR−1Π2, for
a random projection matrix Π2, such as the one used
by Algorithm 1.

With the procedure outlined above, the matrix T is
effectively applied to the rows of AR−1Π2, i.e., to the
sketch of A that has rows with Euclidean norms ap-
proximately equal to the row norms of U , and pair-
wise inner products approximately equal to those in
U . Thus statistics related to U can be extracted. For
example, in one pass we can: find the indices of all
rows of A for with “large” leverage scores and compute
a (1+ ϵ)-approximation to the leverage scores of these
large rows; approximately compute statistics such as
the entropy of the distribution of leverage scores of
A; and obtain samples of rows of A with proability
proportional to their leverage score distribution.

More details can be found in the technical report ver-
sion of this paper (Drineas et al., 2011).

References

Achlioptas, D. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal
of Computer and System Sciences, 66(4):671–687,
2003.

Ailon, N. and Chazelle, B. The fast Johnson-
Lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39(1):302–
322, 2009.

Ailon, N. and Liberty, E. Fast dimension reduction
using Rademacher series on dual BCH codes. In
Proceedings of the 19th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1–9, 2008.

Boutsidis, C., Mahoney, M.W., and Drineas, P. An
improved approximation algorithm for the column
subset selection problem. In Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 968–977, 2009.

Candes, E.J. and Recht, B. Exact matrix completion
via convex optimization. Foundations of Computa-
tional Mathematics, 9(6):717–772, 2009.

Chatterjee, S. and Hadi, A.S. Influential observations,
high leverage points, and outliers in linear regres-
sion. Statistical Science, 1(3):379–393, 1986.

Drineas, P., Mahoney, M.W., and Muthukrishnan, S.
Sampling algorithms for ℓ2 regression and applica-
tions. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1127–1136,
2006.

Drineas, P., Mahoney, M.W., and Muthukrishnan, S.
Relative-error CUR matrix decompositions. SIAM
Journal on Matrix Analysis and Applications, 30:
844–881, 2008.

Drineas, P., Mahoney, M.W., Muthukrishnan, S., and
Sarlós, T. Faster least squares approximation. Nu-
merische Mathematik, 117(2):219–249, 2010.

Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and
Woodruff, D. P. Fast approximation of matrix co-
herence and statistical leverage. Technical report,
2011. Preprint: arXiv:1109.3843 (2011).

Hoaglin, D.C. and Welsch, R.E. The hat matrix in
regression and ANOVA. The American Statistician,
32(1):17–22, 1978.

Mahoney, M. W. Randomized algorithms for matri-
ces and data. Foundations and Trends in Machine
Learning. NOW Publishers, Boston, 2011. Also
available at: arXiv:1104.5557.

Mahoney, M.W. and Drineas, P. CUR matrix decom-
positions for improved data analysis. Proc. Natl.
Acad. Sci. USA, 106:697–702, 2009.

Mohri, M. and Talwalkar, A. Can matrix coherence be
efficiently and accurately estimated? In Proceedings
of the 14th International Workshop on Artificial In-
telligence and Statistics, 2011.

Mougeot, M., Picard, D., and Tribouley, K. Learn-
ing out of leaders. Technical report. Preprint:
arXiv:arXiv:1001.1919 (2010).

Sarlós, T. Improved approximation algorithms for
large matrices via random projections. In Proceed-
ings of the 47th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 143–152, 2006.

Talwalkar, A. and Rostamizadeh, A. Matrix coherence
and the Nyström method. In Proceedings of the 26th
Conference in Uncertainty in Artificial Intelligence,
2010.

Tropp, J.A. Greed is good: Algorithmic results for
sparse approximation. IEEE Transactions on Infor-
mation Theory, 50(10):2231–2242, 2004.

