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Abstract

Maximizing high-dimensional, non-convex
functions through noisy observations is a no-
toriously hard problem, but one that arises in
many applications. In this paper, we tackle
this challenge by modeling the unknown func-
tion as a sample from a high-dimensional
Gaussian process (GP) distribution. Assum-
ing that the unknown function only depends
on few relevant variables, we show that it is
possible to perform joint variable selection
and GP optimization. We provide strong
performance guarantees for our algorithm,
bounding the sample complexity of variable
selection, and as well as providing cumulative
regret bounds. We further provide empirical
evidence on the effectiveness of our algorithm
on several benchmark optimization problems.

1. Introduction

We consider the problem of function optimization in
high dimensions. In many situations one wishes to find
the maximum of a function quickly, from (noisy) evalu-
ation at a small number of points. This problem occurs
in various domains, for instance when learning optimal
control strategies for robots (Lizotte et al., 2007), or
when optimizing industrial processes that depend on
many variables. It is particularly interesting to con-
sider the case where the domain of the function f we
desire to optimize is high-dimensional (say [−1, 1]D),
but when the values of the function depend only on
a reduced, albeit unknown, set of variables. If there
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are d such “active” variables, where d� D, it is some-
what plausible that the performance of such a function
optimization procedure depends mostly on the intrin-
sic dimension d, and only depends mildly on the ex-
trinsic dimension D. In this paper we formalize such
insight, and provide a suite of algorithms based on Hi-
erarchical Diagonal Sampling (HDS), which are able to
perform both variable selection and function optimiza-
tion in such settings. We provide strong theoretical
guarantees, including a sample complexity bound that
depends only logarithmically on the extrinsic dimen-
sionality, as well as cumulative regret bounds on the
performance of joint variable selection and optimiza-
tion. We evaluate our proposed algorithms on several
benchmark optimization problems.

Related Work Variable selection and optimization
have both been extensively studied separately from
each other. In variable selection one seeks an active
set of variables, among many others, that explain a
response function well. One family of models called
sparse linear models study the case where the response
function is linear in the variables. For example, Lasso
(Tibshirani, 1996) tackles this combinatorial prob-
lem using an continuous approximation, which has
been shown to be optimal under certain conditions
(Donoho, 2006). Alternative models have been
proposed to handle non-linear response functions.
Automatic Relevance Determination (ARD, MacKay
(1992)) is a Bayesian variable selection procedure that
imposes a Gaussian prior on the bandwidths of the
variables, which can be combined with a GP likelihood
to handle non-linear functions. Yet there is little
formal analysis regarding its sample complexity rate.
Rodeo (Lafferty & Wasserman, 2008) is an efficient
algorithm that simultaneously estimates bandwidths
and selects variables in non-parametric regressions. It
has favorable theoretical properties of risks and con-



Joint Optimization and Variable Selection of High-Dimensional Gaussian Processes

vergence rates. Also bearing similarities to our work is
Distilled Sensing (Haupt et al., 2011), which attempts
to quickly identify large portions of the variable space
that are irrelevant, therefore reducing the search
complexity as more data is collected, and effectively
shedding the dependency on the extrinsic dimension.
However, none of these models address the problem
of function optimization in an active learning setting.
The goal of active function optimization is to optimize
an unknown function with as few samples as possible.
One line of work called Bayesian global optimization
(Ginsbourger & Riche, 2010; Brochu et al., 2010)
assumes the unknown function is sampled from a GP.
In particular, the GP-UCB (Srinivas et al., 2010)
algorithm has been shown to have sub-linear regret
and work well emprically. However, dealing with high
dimensional domains is a notoriously hard challenge
for these approaches. Most of this existing work
has considered variable selection and function opti-
mization separately. Recently, the problem of joint
variable selection and linear optimization has been
tackled by (Abbasi-Yadkori et al., 2012), who exploit
sparsity to alleviate the curse of dimensionality. Con-
currently, (Carpentier et al., 2012) combines compress
sensing and bandit theory to achieve sub-linear regret
bounds for sparse functions. However, they deal only
with linear or approximately linear reward functions
whereas our method handles non-linear functions.

2. Model and Problem Statement

We focus on functions of bounded domain, which,
w.l.o.g., we assume to be [−1, 1]D, where D is called
the extrinsic dimension. Let f : [−1, 1]D → R be
a fixed, but unknown function. The value and loca-
tion of the maximum of this function are our main
quantities of interest. We assume that this function
depends only on a subset of the domain variables,
which we call the active variables or active dimen-
sions, denoted by A ⊂ {1, . . . , D}. We are particularly
interested in the case where the set of active dimen-
sions is rather small relative to the extrinsic dimension,
namely d = |A| � D.

Without some regularity assumptions on f , opti-
mization would be hopeless. We choose to model
smoothness of f by assuming that it is a sam-
ple from a Gaussian Process (GP, Rasmussen &
Williams (2006)) with zero mean1 and a squared-
exponential2 kernel K. In order to model the fact

1The assumption that the GP has zero mean is not crit-
ical, but greatly simplifies the description later. See Sec 2.7
of Rasmussen & Williams (2006) for a treatment of non-
zero means.

2It is straightforward to extend our analysis to other
isotropic kernel functions.

that the function depends on only a subset of the
variables A, we assume that the kernel is of the

form K(x,x′) = σ2
s exp

(
−
∑
i∈A

(xi−x′
i)

2

b2

)
, where

x,x′ ∈ [−1, 1]D, σ2
s is the self variance of the kernel,

and b > 0 is the bandwidth corresponding to the
active dimensions, respectively.

Although the function f is modeled as a sample from
a stochastic process, we assume it to be fixed through-
out the data collection process. In particular we are
allowed to collect data of the form yt = f(xt) + εt
where t = {1, 2, . . .}, εt are independent and identi-
cally distributed (i.i.d.) normal random variables with
zero mean and variance σ2 > 0 (assumed known), also
independent of f . We are interested in developing
an algorithm that chooses xt as a function of all
the past observations {x`, y`}t−1`=1, in order to locate
the maximum x∗ = argmaxx f(x) of f as quickly as
possible. We evaluate any candidate algorithm in

terms of its regret, RT =
∑T
t=1[f(x∗)− f(xt)]. Notice

that the average regret, RT /T is an upper bound
on the minimum regret, mint=1,...,T [f(x∗) − f(xt)],
therefore minimizing the cumulative regret will lead
to algorithms with good anytime performance.

3. Variable Selection

We propose a two-staged method for variable selec-
tion and function optimization, tied together through
proper choice of certain parameters as described below.
Variable selection is attained by means of a hierarchi-
cal diagonal sampling (HDS) stage. After the iden-
tification of active variables, we apply the GP-UCB
algorithm (Srinivas et al., 2010) to optimize over the
variables deemed active.

3.1. Hierarchical Diagonal Sampling

In a nutshell, the HDS algorithm recursively splits the
set of variables into two sets of equal size, and keeps
splitting the sets that are more likely to contain active
variables. More specifically, HDS sequentially con-
structs a tree where each node corresponds to a set
of variables, meaning each node can be uniquely iden-
tified by a subset of {1, . . . , D}. Any node that is not
a leaf has two children, corresponding to two disjoint
subsets of dimensions, each with half of the size of the
parent node. Each node in this tree can be in one of
three states: active nodes contain at least one active
dimension, inactive nodes are guaranteed (w.h.p.) to
contain no active dimensions, and for undetermined
nodes we have insufficient evidence to draw any con-
clusions about their activeness. All the nodes start un-
determined, but as more samples are collected, a node
will either become active, which implies that at least
one of its children is active, or inactive, which renders
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its entire subtree inactive. Naturally, if a leaf node
(which contains a single dimension) is active, then the
dimension is deemed an active dimension.

The crucial step in this algorithm is to determine if a
node I ⊆ {1, . . . , D} is (in-)active. With that in mind,
we construct a one-dimensional projection fI(·) of the
function defined as follows: Let x(0) ∈ [−1, 1]D denote
a randomly chosen background vector (this choice is
made before any observations are collected). Define
the function xI : [−1, 1]→ [−1, 1]D such that

xI,i(z) =

{
z if i ∈ I
x
(0)
i otherwise

,

where z ∈ [−1, 1]. The one-dimensional projection of
f in I is then simply defined as

fI(z) = f(xI(z)) .

The function fI : [−1, 1]→ R is a sample from a one-
dimensional GP, with kernel KI

KI(x, x
′) = σ2

s exp
(
−aI (x−x′)2

b2

)
,

where x, x′ ∈ [−1, 1] and aI = |A ∩ I| is the number
of active variables in node I. In other words, KI is a
squared-exponential kernel whose bandwidth depends
on the number of active variables.

Therefore, to identify if I contains any active variable
it suffices to test which kernel best characterizes the
landscape of noisy observations of fI . We propose two
methods for doing so: the Finite Difference Sequential
Likelihood Ratio Test (FDT), and the GP Sequential
Likelihood Ratio Test (GPT), each with their respec-
tive advantages.

3.2. Finite Difference Sequential Likelihood
Ratio Test (FDT)

We use hypothesis testing in order to determine,
whether node I contains any active variables3. We
consider two hypothesis: the null hypothesis H0: I
contains no active variable; the alternative H1: I con-
tains at least one active variable. We begin by consid-
ering a non-sequential testing approach to this prob-
lem.

Finite Difference Testing: The key idea is the
following: If node I contains no active variables,
then fI(x) should be constant. In contrast, if the
node I contains active variables, fI(x) should exhibit
a significant amount of variation as we vary x. In
the following, we formalize this intuition. Suppose
we pick two random points x and x′, independently

3Using hypothesis testing for GP active learning was
proposed by Krause & Guestrin (2007). However, their
approach does not apply to our variable selection setting.

and uniformly distributed over [−1, 1]. Consider
∆ = ∆(x, x′) = fI(x)−fI(x′). Both under H0 and H1

E[∆] = 0. Further, in the null hypothesis, the variance
V[∆] = 0 as well. In contrast, under H1, V[∆] = c > 0.
Unfortunately we cannot observe ∆(x, x′) directly
due to measurement noise. However, we can try to
estimate V[∆] by picking n pairs of points xi, x

′
i inde-

pendently at random and computing the test statistic

Xn =
1

2σ2

n∑
i=1

[y(xi)− y(x′i)]
2,

where y(xi) and y(x′i) are all independent noisy point
observations of fI(·), corrupted by additive Gaussian
noise with zero mean and variance σ2. Under H0, Xn

is distributed according to a central χ2
n distribution

with n degrees of freedom. In contrast, under H1,
Xn is distributed according to a non-central χ2

n,Bn
distribution with (unknown) non-centrality parameter

Bn =
∑
i ∆2

i , and ∆i = (fI(xi) − fI(x
′
i))/
√

2σ2.
The following Proposition provides a testing pro-
cedure, along with a sample-complexity bound, for
distinguishing H0 and H1 with arbitrarily low failure
probability.

Proposition 3.1. Let Bn =
∑n
i=1 ∆2

i , where ∆2
i ∈

[0,M ] are independent random variables satisfying
E[∆2

i ] ≥ c. Consider testing between two hypothesis

H0 : Xn ∼ χ2
n and H1 : Xn|Bn ∼ χ2

n,Bn ,
where in the alternative hypothesis we assume that,
conditioned on Bn, the distribution of Xn is a non-
central χ2 with n degrees of freedom and non-centrality
parameter Bn. Provided

n ≥ max

{
2,

16
(
1 +
√

1 + c
)2

c2
,

2M2

c2

}
log(2/α) .

there is a thresholding test procedure that guarantees
that both type I and type II error are less than α. In
other words, there is a value τn such that

PH0(Xn > τn) ≤ α and PH1(Xn < τn) ≤ α .

Notice that the sample complexity given by Proposi-
tion 3.1 crucially depends on the lower bound c on the
variance, which can be viewed naturally as parameter-
izing the problem difficulty.

In order to apply this hypothesis testing strategy to
our setting, we must ensure that samples from a GP
satisfy c = c(f) > 0 with high probability over the
random function f . We have the following result:

Theorem 3.1. Let δ > 0 and σ2
s > 0. Suppose f is a

sample from a GP on [−1, 1] with constant mean and
covariance k(x, x′) = σ2

s exp(−|x− x′|2/h2), for some
h ≤ 2

(log 8
δ )

2 . Let x, x′ ∼ U([−1, 1]) be two independent,

uniformly distributed random variables and define ∆ =
f(x)− f(x′).
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There exist constants a > 0 and b > 0 such that with
probability at least 1− δ over f it holds for the condi-
tional variance of ∆ that

Vx,x′ [∆ | f ] ≥ σ2
sh

2

4096b2 log(2a/(hδ))
.

Thus, as long as h is sufficiently small, the variance c
of ∆ is lower bounded with high probability. Asymp-
totically, if h−1 = Θ(log(1/δ)2), then, as δ → 0,

Vx,x′ [∆ | f ] = Ω

(
σ2
s

(log(1/δ))4

)
,

with probability at least 1− δ.

A Sequential Testing Procedure: While pro-
viding sample complexity guarantees, the bounds of
Proposition 3.1 in conjunction with Theorem 3.1 are
very loose in practice. Furthermore, in order to de-
termine the threshold τn, the lower bound c on the
variance must be taken in the worst-case scenario. As
a more practical alternative, we consider a sequential
testing strategy, which is able to adjust the sample
complexity depending on the problem difficulty. The
key idea behind our sequential approximation is that
under the GP prior, we can characterize the distri-
bution of yI(x) − yI(x + δ), the difference for point
samples at a distance δ.

First, we focus on the concrete case where node I has
either no active variables, or a known number of ex-
actly a active variables. In this case, the data dis-
tribution under each scenario is entirely known. The
case a = 1 is the hardest, intuitively because yI varies
less the fewer active variables I has. Later we show
that the composite case of distinguishing none vs. at
least one active variable is of exactly the same diffi-
culty. Setting dyI = yI(x) − yI(x + δ), we have that
the marginal distribution of this quantity is given by

dyI ∼ N (0, σ2
a); σ2

a ≡ 2

[(
1− exp

(
−aδ

2

b2
))
σ2
s + σ2

]
.

Now suppose a = 1. If we pick δ at random, then dyI is
distributed according to a scale-mixture of Gaussians.
Instead, in our sequential test, we simply fix δ = 3b. In
this case, the variance under H0 is σ2

0 ≡ 2σ2 whereas
the variance under H1 is 2((1 − 1/e−3)σ2

s + σ2) ≥
2(.95σ2

s + σ2) ≡ σ2
1 . Thus by estimating the variance

of the finite differences for this fixed choice of δ, we
expect to be able to distinguish between H0 and H1.

We now employ sequential hypothesis testing using
the sequential likelihood ratio test (SLRT) as described
in Siegmund (1985). This is an incremental proce-
dure that sequentially computes the log likelihood ra-
tio (LLR) between two hypotheses, and makes a deci-
sion once this ratio crosses two predetermined bound-
aries. In our finite differences setting, a pair of samples

are collected each time to update the LLR between
H1 and H0. The test terminates as soon as LLR is
either larger than an upper threshold Θ1 (and we ac-
cept H1) or smaller than a lower threshold Θ0 (and we
accept H0). The LLR given a collection of T samples
{dyI(xt)}Tt=1 can be computed in an additive fashion:

LLR({dyI(xt)}Tt=1) =

T∑
t=1

LLR(dyI(xt)), (1)

where the LLR for each individual dyI(xt) = dy is:

LLR(dy) = logN (dy|0, σ2
1)− logN (dy|0, σ2

0)

= (
1

2σ2
0

− 1

2σ2
1

)dy2 + log
σ0
σ1
. (2)

Several remarks are in order. First, for a fixed value
of dy, under H1, E[LLR(dy)] is a monotonic func-
tion in σ1, which indicates that I containing one ac-
tive variable is indeed the hardest case. Secondly,
the classical SLRT requires independent samples, and
under the GP prior, two finite differences dyI(x) =
yI(x)−yI(x+ δ) and dyI(x

′) = yI(x
′)−yI(x′+ δ) will

be correlated. However, if |x− x′| is sufficiently large,
dyI(x) and dyI(x

′) will be nearly independent.

Lastly, since SLRT is carried out separately for each
undetermined node in the tree, we would like to invest
more samples on nodes that are the most likely to be
active so as to reach all the active leaf nodes with
minimum sample complexity. For this purpose, we
allocate samples one at a time and always pick the
node I that has the largest LLR so far. According to
Eq. 2, statistics of LLR per finite difference depend
only on σ1 and σ0, hence all the nodes for which H1

is true share the same upward slope for LLR, and the
largest LLR naturally is the most likely to reach Θ1.

3.3. GP Seq. Likelihood Ratio Test (GPT)

Instead of making an independence assumption, one
can explicitly model the correlation between samples.
Knowing the underlying hypothesis completely deter-
mines the data distribution, as it follows a GP with
known covariance structure determined by KI,a, where
this kernel depends on a, the number of active vari-
ables in I. To avoid notational clutter, we drop the
explicit dependence on node I when its identity is clear
from the context.

We focus first on a single node I. Given past observa-
tions of x1:t−1 and y1:t−1, we can compute the poste-
rior distribution of yI t given xt under each hypothesis.

yI t |xt,x1:t−1,y1:t−1 ∼ N
(
µta(xt), (σ

t
a(xt))

2
)
.
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µta(x) ≡ ka(x)T (Ka + σ2I)−1y1:t−1,

σta(x) ≡ σ2 +Ka(x, x)− ka(x)T (Ka + σ2I)−1ka(x),

ka(x) ≡ [Ka(x, x1), · · · ,Ka(x, xt−1)]T ,

Ka ≡ [ka(x1), · · · ,ka(xt−1)].

Consider the conditional LLRt(y |xt,x1:t−1,y1:t−1),
denoted by LLRt(y) for convenience. Suppose we have
sampled at x∗t and observed y∗t . Then LLRt(y

∗
t ) is:

LLRt(y
∗
t ) = logN (y∗t |µt1(x∗t ), (σ

t
1(x∗t ))

2)

− logN (y∗t |µt0(x∗t ), (σ
t
0(x∗t ))

2).

Finally, the LLR of all the observed samples, LLR1:t

is given by:

LLR1:t = LLR1:t−1 + LLRt(y
∗
t ). (3)

After each observation we compare LLR1:t with two
thresholds Θ1 and Θ0. If the LLR is above the first
one, then we stop sampling and decide the node is
active. If below the second threshold, we decide the
node is inactive. Finally, if neither of these conditions
holds we continue collecting data.

Sampling Strategy: The only remaining issue for
this hypothesis testing procedure is to decide on the
next sample. Note that, under H1, the conditional dis-
tribution of the likelihood ratio for a sample at point xt
follows a shifted non-central Chi-squared distribution:

LLRt(yt) ∼ w2χ
2(1, λ) + w0,

where w2 ≡ 0.5
(
σt1(xt)

2/σt0(xt)
2 − 1

)
, w0 ≡

log(σt0(xt)/σ
t
1(xt)) − (µt1(xt)−µ

t
0(xt))

2

2(σt1(xt)
2−σt0(xt)2)

and λ =(
σt1(xt)(µ

t
1(xt)−µ

t
0(xt))

σt1(xt)
2−σt0(xt)2

)2
.

Given that we want to decide as quickly as we
can if a node is active, it makes sense to choose
the point xt that tends to maximize LLRt(yt) the
most. A natural choice is to take xt maximizing
E(LLRt(yt)) +

√
V(LLRt(yt)). This choice is easily

justified in light of tail bounds for Chi-squared
distributions, such as those in the long version of the
paper. Finally, as at each moment we are considering
multiple nodes in the tree, we choose the node I
that maximizes the above quantity over all nodes.
Let UCB(I, xt) = E(LLRI,t(yt)) +

√
V(LLRI,t(yt)).

We choose point xt and node I so to maximize this
index. In other words, we choose the node I that is
more likely to be deemed active after sampling. The
complete procedure is described in Algorithm 1. Fig 1
shows an example of the search tree.

The following theorem characterizes the accuracy and
sample complexity of HDS when using an arbitrary
testing procedure block.

Algorithm 1 Hierarchical Diagonal Sampling

Input: Sample budget; Thresholds Θ1, Θ0; D.
Initialize root I0 ←− D, LLR(I0)←− 0
Initialize tree T ←− {I0}, active set A ←− ∅.
while # samples ≤ budget and |T | > 0 do

if FDT then
Sample node I ←− arg maxI′∈T LLR(I ′), then sam-
ple x′ ∈ [−1 1] uniformly at random.

else if GPT then
Sample I, x←− arg maxI′∈T ,x′∈[−1 1] UCB(I ′, x′)
update index UCB(I, x′) ∀x′ ∈ [−1 1]

Compute LLR(I) using Eq 1 or 3
if LLR(I) ≥ Θ1 (I is active) then

if I is a singleton then
A ←− A∪ {I}, T ←− T \ {I}

else
Split I arbitrarily into two nodes L, R, each with
half of the variables in I
LLR(L)←− 0, LLR(R)←− 0.
T ←− T \ {I} ∪ {L,R}

else if LLR(I) ≤ Θ0 (I is not active) then
T ←− T \ {I}

Increment # samples
Output: Set of active variables A

Figure 1. Sample HDS search tree. For each node, the set
of dimensions is shown in brackets, followed by the number
of samples. Each node is color-coded by the cumulative
LLR over its samples, redder means larger. A = {25, 28}.

Theorem 3.2. Let A′ denote the set of active dimen-
sions identified by the HDS algorithm, also let α and
β denote respectively the false positive and false nega-
tive rates for the testing procedure used. All logs are
base-2.
Accuracy: For an arbitrary ε > 0, provided
α, β ≤ (ε/D)1/dlogDe the probability of perfect recov-
ery is P (A′ = A) ≥ 1− ε.
Sample Complexity: Let Tmax be the maximum
expected sample usage per node, and N be the sample
complexity of the HDS algorithm. The expected sam-
ple complexity is bounded by:

E(N) ≤ 2(1− α)

1− 2α
ddlogDeTmax (4)

The proof of the first part expresses the probability
of any particular leaf node being correctly classified,
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and then applies a union bound on the event that all
the leaf nodes are classified correctly. For the second
part we study how testing errors change the tree gen-
erated by HDS under perfect conditions. Since every
node incorrectly deemed active can spawn at most 2
inactive children with probability α we can get an up-
per bound on expected number of active nodes, and in
turn, the worst case expected sample complexity. See
the extended paper for details.

Theorem 3.3. Given ε > 0, set δ = ε
6ddlogDe and

α = (ε/(2D))1/dlogDe. Assume ε is small enough
so that α < 1/4. Assume b ≤ 2

(log(1/δ)2 . Con-

sider the HDS algorithm with non-sequential FDT
using a fixed sample size per node Aε log (2/α),

where Aε ≡ max
{

2, 16(1+
√
1+Bε)

2

B2
ε

, 8
B2
ε

}
and Bε ≡

σ2
sb

2/(4096c22 log(4c1/(bδ))), where c1, c2 > 0 are con-
stants. Then, for a judicious choice of c1 and c2 the
HDS-FDT procedure is correct with probability at least
1− ε, and the sample complexity:

N < Nε ≡ AεddlogDe(log 16 +
log (1/ε)

dlogDe
). (5)

Note that Aε = Θ ((log(1/ε) + log(ddlogDe))8), and
Nε = Θ

(
(log 1

ε + log(ddlogDe))8d(dlogDe+ log 1
ε )
)
.

The proof (given in the extended paper) consists es-
sentially in plugging in the results of Theorem 3.1 in
Proposition 3.1, and applying theorem 3.2.

4. Optimization

After identifying the set A of active variables, we fo-
cus on optimizing f over these relevant dimensions. In
principle, various algorithms can be used for this pur-
pose. We consider the GP-UCB algorithm (Srinivas
et al., 2010). GP-UCB is a greedy algorithm, which
iteratively picks the point

xt+1 = argmax
x∈[−1,1]D

µt(x) + β
1/2
t σt(x),

where µt(x) and σ2
t (x) are the posterior mean and

variance at input x, conditioned on the first sam-
ples x1, . . . ,xt and associated observations y1, . . . , yt.
β1, . . . , βT is an appropriate sequence of constants
for balancing exploration (choosing uncertain x with
large variance) and exploitation (choosing x with
large means), as specified in detail by Srinivas et al.
(2010). For GP-UCB, strong performance guarantees
are known: In particular, Theorem 2 of Srinivas et al.
(2010) bounds the cumulative regret of GP-UCB in
terms of the maximum information gain γT obtain-
able by observing f at an arbitrary set of T inputs
x1:T . Hereby, γT is a monotonically increasing func-
tion of T , depending on the covariance function and
domain of the GP. For the squared exponential kernel
it is bounded by O((log T )d

′+1), where d′ is the di-
mensionality of the underlying space. The cumulative

regret of GP-UCB is bounded by O∗(
√
TγT ) (where

the O∗ notation hides logarithmic factors).

Straightforward application of GP-UCB without vari-
able selection would lead to regret bounds depending
on the extrinsic dimensionality d′ = D. However, after
variable selection we can apply GP-UCB only to vari-
ables that are deemed active, obtaining a regret bound
depending on d′ = d, the intrinsic dimensionality only.

Assume that function value f(x) is bounded so that
the maximum regret per sample is bounded by C0. Let
N be the termination time of the HDS procedure, x∗

a global optimum of f and RT =
∑T
t=1[f(x∗)− f(xt)]

the cumulative regret.

Theorem 4.1. ∀T ∈ N∗, δo > 0, set ε = 1/T and

βt = 2 log(
t22π2

3δo
) + 2d log

(
2t2dσs
b

√
log(

4d

δo
)

)
.

Running HDS with FDT and recovery rate 1 − ε,
followed by the GP-UCB algorithm on the variables
deemed active guarantees that with probability ≥ 1−δo:

E(RT ) ≤ A′T
√
T + (Nε + 1)C0 + 2 +

NεC0

T
.

where A′T =
√
C1βT γT = O((log T )d/2+1, C1 =

8/ log(1 + b−2), and Nε = O(log(1/ε)9) = O((log T )9).

Thus, the regret depends only logarithmically on the
extrinsic dimension D.

The proof (given in the extended paper) bounds the
worst case regret separately for the variable selection
and optimization phases, assuming that maximum re-
gret is incurred during HDS and, if HDS fails, during
every round of the GP-UCB procedure. The former
cases incurs linear regret for finite numbers of samples,
and the latter does so for all samples but with a small
probability ε. When HDS is successful, Theorem 2
of Srinivas et al. (2010) guarantees a sub-linear regret
bound for GP-UCB.

5. Experiments and Results

We compare HDS with a natural baseline called
Coordinate-wise Sampling (CWS). CWS computes
finite differences along each dimension separately
using the same number of samples, and outputs the
dimensions with the largest variance. We clairvoy-
antly choose the number of samples CWS needs to
successfully recover all the active dimensions. Doing
so favors the CWS algorithm in comparison to HDS.

Functions sampled from a GP: We consider
the case where the test function is a sample from
a GP with a squared-exponential kernel: b = 0.1
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Figure 2. Sample complexity versus log dimensions and
noise variance. If not varied, the default hyper-parameter
setting is D = 200, and σ2

n = 0.1.

and self variance σ2
s = 1. We vary the total num-

ber of dimensions D ∈ {10, 20, 40, 80, 200, 400},
σ2
n ∈ {0.05, 0.1, 0.25, 0.36}, and compare FDT, GPT

and CWS in terms of accuracy (recovery probability)
and sample complexity. The thresholds {Θ1,Θ0} were
optimized using grid search over Θ1 ∈ {5, 10, 20} and
Θ0 ∈ {−5,−10,−20} to ensure maximum recovery
accuracy with the minimum sample complexity for
the setting of D = 200, σ2

n = 0.1. The optimal value is
then used for all settings. We repeat each setting for
20 random trials and report the mean ± 3 standard
error. Accuracies of HDS under all settings are 100%.
Fig 2 shows how sample complexity varies as a func-
tion of dimensionality D and noise parameters σ2. As
predicted, the complexity grows linearly with log(D),
the logarithm of the extrinsic dimension, and linearly
with the noise level. GPT consistently uses about 50%
less samples than FDT. In contrast, CWS is less stable
and scales linearly as D. Using the oracle parameter
setting CWS has little dependence on σ2, yet HDS
remains more efficient even in highly noisy situations.

We also examine the sensitivity of HDS w.r.t. the as-
sumption that the noise parameter σ2 and the band-
width b are known. Fig 3 shows accuracy and sample
complexity as a function of the ratio between the mis-
estimated σ and the truth. FDT can tolerate over-
and under-estimation of the noise level by a factor
of 2, while GPT is more stable, withstanding mis-
estimation by factors of 0.5 to 10. Both methods
are robust w.r.t. b. Sample complexity and accuracy
remain constant (FDT: 412 samples, 100% accuracy,
GPT, 228 samples, 100% accuracy) when b is mis-
estimated by factors of 0.01 to 10.

Functions embedded in high dimensions: We
also take the following low dimensional functions and
hide them in a D = 200 dimensional space:

Quad: quadratic function (d = {2, 4, 6}).
Quad(x) = (P (x−x∗))T (P (x−x∗))+σ2

n where x∗ is a
random vector and P is a diagonal projection matrix:
Pii = 1/b if i ∈ A and Pii = 1/100 otherwise.
QuadMix: quadratic with linear mixture (d =
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Figure 3. Sample complexity and accuracy versus mis-
estimation ratio for noise level.

Table 1. Recovery Accuracy
\Function Quad QuadMix Branin Beale
Method \ d 2 4 6 2 4 6 2 2

FDT 1 1 1 1 1 1 1 0
GPT 1 1 1 1 1 0.95 1 0
CWS 0 0 0 0 0 0 0.45 0.25

{2, 4, 6}). Similar to Quad(x), QuadMix(x) =
(MP (x − x∗))T (MP (x − x∗)) + σ2

n where M = (1 −
rmix)I+ rmix. rmix = 1/D controls how the irrelevant
dimensions interfere with the relevant ones.
Branin: (d = 2) is a classical test function for un-
constrained global optimization. It has a broad global
landscape and peaks at (−1,−1).
Beale: (d = 2) is a challenging test function. It re-
mains flat for 90% in the domain, and gets flatter the
closer it gets to the optimum.

We compare accuracy and sample complexity for the
FDT, GPT and CWS. All functions are rescaled to
[−1 1] and the best parameter set found in the pre-
vious section is used4. The sample size is limited at
2000 per function. Error bars are obtained from 20
trials. The accuracies for Quad and QuadMix are
shown in Table 1. The sample complexity for Quad
and QuadMix are shown in Fig 4. The complex-
ity for Branin is: FDT (267 ± 28), GPT(236 ± 12)
and CWS (1703 ± 96). The complexity for Beale is:
FDT(280±10), GPT(674±44) and CWS (1802±82).

The results for Quad, QuadMix and Branin agree
with the case of GP test functions and the theoret-
ical analysis, showing the sample complexity’s linear
dependence on the relevant dimensions and logarith-
mic dependence on the extrinsic dimensionality. HDS
(with testing blocks FDT or GPT) does not work for
Beale because it is mostly constant, and therefore it is
severely different than a typical sample from a GP.

Joint Variable Selection and Optimization Fi-
nally we compare the optimization performance of our
2-step procedure of HDS followed by GP-UCB against
the conventional GP-UCB algorithm on all D dimen-
sions. Note that if D is large, GP-UCB becomes in-

4In practice these parameters could be learned from a
small set of held-out samples, or refined online.
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(a) Sample complexity (b) Average Regret (c) Min Regret

Figure 5. (a) Sample complexity and accuracy for Quad (upper) and Branin (lower) depending on D. (b) Average and
(c) min regret of GP, Quad, QuadMix and Branin. D = 4, d = 2, σ2 = 0.1. Confidence bands obtained from 20 trials.
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Figure 4. Sample complexity for Quad (left) and QuadMix
functions(right).

feasible, in which case our method has a clear advan-
tage. Even with small D, however, we show in Fig 5(b)
and 5(c) that our method achieves a faster reduction in
the average regret RT /T , and obtains better minimum
regrets mint[f(x∗)− f(xt)].

6. Conclusions

We considered the problem of optimizing high dimen-
sional functions that only depend on few active vari-
ables. We proposed HDS for variable selection and
analyzed its sampling complexity in terms of proper-
ties of a modular hypothesis testing subroutine. For a
classical (non-sequential) subroutine we proved sample
complexity bounds, implying strong end-to-end per-
formance guarantees for GP optimization in high di-
mensions. We also explored two practical alternatives
based on sequential hypothesis testing and demon-
strated their effectiveness on several high-dimensional
optimization problems. We believe that our results
provide important insights towards solving high di-
mensional optimization problems under uncertainty.
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