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Abstract

Learning invariant representations is an im-
portant problem in machine learning and
pattern recognition. In this paper, we
present a novel framework of transformation-
invariant feature learning by incorporat-
ing linear transformations into the fea-
ture learning algorithms. For example,
we present the transformation-invariant re-
stricted Boltzmann machine that compactly
represents data by its weights and their
transformations, which achieves invariance
of the feature representation via probabilis-
tic max pooling. In addition, we show that
our transformation-invariant feature learning
framework can also be extended to other un-
supervised learning methods, such as autoen-
coders or sparse coding. We evaluate our
method on several image classification bench-
mark datasets, such as MNIST variations,
CIFAR-10, and STL-10, and show compet-
itive or superior classification performance
when compared to the state-of-the-art. Fur-
thermore, our method achieves state-of-the-
art performance on phone classification tasks
with the TIMIT dataset, which demonstrates
wide applicability of our proposed algorithms
to other domains.

1. Introduction

In recent years, unsupervised feature learning algo-
rithms have emerged as promising tools for learning
representations from data (Hinton et al., 2006; Bengio
et al., 2007; Ranzato et al., 2006). In particular, it
is an important problem to learn invariant representa-
tions that are robust to variability in high-dimensional
data (e.g., images, speech, etc.) since they will en-
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able machine learning systems to achieve good gen-
eralization performance while using a small number
of labeled training examples. In this context, sev-
eral feature learning algorithms have been proposed
to learn invariant representations for specific transfor-
mations by using customized approaches. For exam-
ple, convolutional feature learning methods (Lee et al.,
2011; Kavukcuoglu et al., 2010; Zeiler et al., 2010) can
achieve shift-invariance by exploiting convolution op-
erators. As another example, the denoising autoen-
coder (Vincent et al., 2008) can learn features that
are robust to the input noise by trying to reconstruct
the original data from the hidden representation of the
perturbed data. However, learning invariant represen-
tations with respect to general types of transforma-
tions is still a challenging problem.

In this paper, we present a novel framework of
transformation-invariant feature learning. We focus
on local transformations (e.g., small amounts of trans-
lation, rotation, and scaling in images), which can
be approximated as linear transformations, and incor-
porate linear transformation operators into the fea-
ture learning algorithms. For example, we present the
transformation-invariant restricted Boltzmann ma-
chine, which is a generative model that represents in-
put data as a combination of transformed weights.
In this case, a transformation-invariant feature rep-
resentation is obtained via probabilistic max pooling
of the hidden units over the set of transformations. In
addition, we show extensions of our transformation-
invariant feature learning framework to other unsu-
pervised feature learning algorithms, such as autoen-
coders or sparse coding.

In our experiments, we evaluate our method on the
variations of the MNIST dataset and show that our
algorithm can significantly outperform the baseline re-
stricted Boltzmann machine when underlying trans-
formations in the data are well-matched to those con-
sidered in the model. Furthermore, our method can
learn features that are much more robust to the wide
range of local transformations, which results in highly



Learning Invariant Representations with Local Transformations

competitive performance in visual recognition tasks
on CIFAR-10 (Krizhevsky, 2009) and STL-10 (Coates
et al., 2011) datasets. In addition, our method also
achieves state-of-the-art performance on phone classi-
fication tasks with the TIMIT dataset, which demon-
strates wide applicability of our proposed algorithms
to other domains.

The rest of the paper is organized as follows. We pro-
vide the preliminaries in Section 2, and in Section 3, we
introduce our proposed transformation-invariant fea-
ture learning algorithms. In Section 4, we review the
previous work on invariant feature learning. Then, in
Section 5, we report the experimental results on sev-
eral datasets. Section 6 concludes the paper.

2. Preliminaries

In this paper, we present a general framework for
learning locally-invariant features using transforma-
tions. For presentation, we will use the restricted
Boltzmann machine (RBM) as the main example.1 We
first describe the RBM below, followed by its novel ex-
tension (Section 3).

The restricted Boltzmann machine is a bipartite undi-
rected graphical model that is composed of visible and
hidden layers. Assuming binary-valued visible and
hidden units, the energy function and the joint prob-
ability distribution are given as follows:2

E(v,h) = −vTWh− bTh− cTv, (1)

P (v,h) =
1

Z
exp (−E(v,h)) (2)

where v ∈ {0, 1}D are binary visible units, h ∈ {0, 1}K
are binary hidden units, and W ∈ RD×K , b ∈ RK ,
and c ∈ RD are weights, hidden biases, and visible bi-
ases, respectively. Z is a normalization factor that de-
pends on the parameters {W,b, c}. Since RBMs have
no intra-layer connectivity, exact inference is tractable
and block Gibbs sampling can be done efficiently using
the following conditional probabilities:

p(hj = 1|v) = sigmoid(
∑
i

viWij + bj) (3)

p(vi = 1|h) = sigmoid(
∑
j

hjWij + ci) (4)

where sigmoid(x) = 1
1+exp (−x) . We train the RBM

parameters by minimizing the negative log-likelihood

1We will describe extensions to other feature learning
algorithms in Section 3.4.

2Due to space constraints, we present only the case
of binary-valued input variables; however, the RBM with
real-valued input variables can be formulated straightfor-
wardly (Hinton & Salakhutdinov, 2006; Lee et al., 2008).

via stochastic gradient descent. Although computing
the exact gradient is intractable, we can approximate
it using contrastive divergence (Hinton, 2002).

3. Learning Transformation-Invariant
Feature Representations

3.1. Transformation-invariant RBM

In this section, we formulate a novel feature learning
framework that can learn invariance to a set of lin-
ear transformations based on the RBM. We begin the
section with describing the transformation operator.

The transformation operator is defined as a mapping
T : RD1 → RD2 that maps D1-dimensional input vec-
tors into D2-dimensional output vectors (D1 ≥ D2).
In our case, we assume a linear transformation matrix
T ∈ RD2×D1 , i.e., each coordinate of the output vec-
tor is represented as a linear combination of the input
coordinates.

With this notation, we formulate the transformation-
invariant restricted Boltzmann machine (TIRBM)
that can learn invariance to a set of transformations.
Specifically, for a given set of transformation matrices
Ts (s = 1, · · · , S), the energy function of TIRBM is
defined as follows:

E(v,H) = (5)

−
K∑
j=1

S∑
s=1

(Tsv)Twjhj,s −
K∑
j=1

S∑
s=1

bj,shj,s − cTv

s.t.

S∑
s=1

hj,s ≤ 1, hj,s ∈ {0, 1}, j = 1, · · · ,K, (6)

where v are D1-dimensional visible units, and wj are
D2-dimensional (filter) weights corresponding to the
j-th hidden unit. The hidden units are represented as
a matrix H ∈ {0, 1}K×S with hj,s as its (j, s)-th entry.

In addition, we denote zj =
∑S
s=1 hj,s, zj ∈ {0, 1} as a

pooled hidden unit over the transformations.

In Equation (6), we impose a softmax constraint on
hidden units so that at most one unit is activated at
each row of H. This probabilistic max pooling3 al-
lows us to obtain a feature representation invariant
to linear transformations. More precisely, suppose
that the input v1 matches the filter wj . Given an-
other input v2 that is a transformed version of v1, the
TIRBM will try to find a transformation matrix Tsj so
that the v2 matches the transformed filter TTsjwj , i.e.,

vT1 wj ≈ vT2 T
T
sjwj .

4 Therefore, v1 and v2 will both

3A similar technique is used in convolutional deep belief
networks (Lee et al., 2011), in which spatial probabilistic
max pooling is applied over a small spatial region.

4Note that the transpose TT
s of a transformation ma-
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Figure 1. Feature encoding of TIRBM. Here, v1 and v2 denote two image patches, and the shaded pattern inside v2

reflects v1. The shaded patterns in transformed filters show the corresponding original filters wi or wj . The filters
selected via probabilistic max pooling across the set of transformations are shown in red arrows (e.g., in the rightmost
example, the hidden unit hj,sj corresponding to the transformation Tsj and the filter wj contributes to activate zj(v2).)
In this illustration, we assumed D1 = D2 and also the existence of the identity transformation.

activate zj after probabilistic max pooling. Figure 1
illustrates this idea.

Compared to the regular RBM, the TIRBM can learn
more diverse patterns, while keeping the number of pa-
rameters small. Specifically, multiplying transforma-
tion matrix (e.g., TTs wj) can be viewed as increasing
the number of filters by the factor of S, but without
significantly increasing the number of parameters due
to parameter sharing. In addition, by pooling over
local transformations, the filters can learn invariant
representations (i.e., zj ’s) to these transformations.

The conditional probabilities are computed as follows:

p(hj,s = 1|v) =
exp (wT

j Tsv + bj,s)

1 +
∑
s′ exp (wT

j Ts′v + bj,s′)
(7)

p(vi = 1|h) = sigmoid(
∑
j,s

(TTs wj)ihj,s + ci) (8)

Similar to RBM training, we use stochastic gradient
descent to train TIRBM. The gradient of the log-
likelihood is approximated via contrastive divergence
by taking the gradient of the energy function (Equa-
tion (5)) with respect to the model parameters.

3.2. Sparse TIRBM

The sparseness of the feature representation is often
a desirable property. By following Lee et al.’s (2008)
approach, we can extend our model to sparse TIRBM
by adding the following regularizer for a given set of
data {v(1), · · · ,v(N)} to the negative log-likelihood:

Lsp =

K∑
j=1

D

(
p,

1

N

N∑
n=1

E[z
(n)
j |v

(n)]

)
(9)

where D is a distance function; p is the target sparsity.

trix Ts also induces a linear transformation. In the paper,
we will occasionally abuse the term “transformation” to
denote these two cases, as long as the context is clear.

The expectation of pooled activation is written as

E[zj |v] =

∑
s exp (wT

j Tsv + bj,s)

1 +
∑
s exp (wT

j Tsv + bj,s)
. (10)

Note that we regularize over the pooled hidden units
zj rather than individual hidden units hj,s. In our
experiments, we used L2 distance for D(·, ·), but one
can also use KL divergence for the sparsity penalty.

3.3. Generating transformation matrices

In this section, we discuss how to design the trans-
formation matrix T . For the ease of presentation, we
assume 1-d transformations, but it can be extended
to 2-d cases (e.g., image transformations) straightfor-
wardly. Further, we assume the case of D1 = D2 = D
here; but, we will discuss general cases later.

As mentioned previously, T ∈ RD×D is a linear trans-
formation matrix from x ∈ RD to y ∈ RD; i.e., each
coordinate of y is constructed via linear combination
of the coordinates in x with weight matrix T as follows:

yi =

D∑
j=1

Tijxj ,∀i = 1, · · · , D. (11)

For example, shifting by s can be defined as

Tij(s) =

{
1 if i = j + s,

0 otherwise.

For 2-d image transformations such as rotation and
scaling, the contribution of input coordinates to each
output coordinate is computed with bilinear interpo-
lation. Since T ’s are pre-computed once and usually
sparse, Equation (11) can be computed efficiently.

3.4. Extensions to other methods

We emphasize that our transformation-invariant fea-
ture learning framework is not limited to the energy-
based probabilistic models, but can be extended to
other unsupervised learning methods as well.
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First, it can be readily adapted to autoencoders by
defining the following softmax encoding and sigmoid
decoding functions:

fj,s(v) =
exp (wT

j Tsv + bj,s)

1 +
∑
s′ exp (wT

j Ts′v + bj,s′)
(12)

v̂i = sigmoid(
∑
j,s

(TTs wj)ifj,s + ci) (13)

Following the idea of TIRBM, we can also formulate
the transformation-invariant sparse coding as follows:

min
W,H

∑
n

‖
K∑
j=1

S∑
s=1

TTs wjh
(n)
j,s − v(n)‖2, (14)

s.t. ‖H‖0 ≤ γ, ‖H(j, :)‖0 ≤ 1, ‖wj‖2 ≤ 1, (15)

where γ is a constant. The second constraint in (15)
can be understood as an analogy to the softmax con-
straint in Equation (6) of TIRBMs.

Similar to standard sparse coding, we can optimize
the parameters by alternately optimizing W and H
while fixing the other. Specifically, H can be (approx-
imately) solved using Orthogonal Matching Pursuit,
and therefore we refer this algorithm a transformation-
invariant Orthogonal Matching Pursuit (TIOMP).

4. Related Work

Researchers have made significant efforts to de-
velop invariant feature representations. For exam-
ple, the rotation- or scale-invariant descriptors, such
as SIFT (Lowe, 1999), have shown a great success in
many computer vision applications. However, these
image descriptors usually demand a domain-specific
knowledge with a significant amount of hand-crafting.

As an alternative approach, several unsupervised
learning algorithms have been proposed to learn robust
feature representations automatically from the sensory
data. As an example, the denoising autoencoder (Vin-
cent et al., 2008) can learn robust features by trying
to reconstruct the original data from the hidden repre-
sentations of randomly perturbed data generated from
the distortion processes, such as adding noise or mul-
tiplying zeros for randomly selected coordinates.

Among types of transformations relating to temporally
or spatially correlated data, translation has been ex-
tensively studied in the context of unsupervised learn-
ing. Specifically, convolutional training (LeCun et al.,
1989; Kavukcuoglu et al., 2010; Zeiler et al., 2010;
Lee et al., 2011; Sohn et al., 2011) is one of the most
popular methods that encourages shift-invariance dur-
ing the feature learning. For example, the convolu-
tional deep belief network (CDBN) (Lee et al., 2011),

which is composed of multiple layers of convolutional
restricted Boltzmann machines and probabilistic max
pooling, can learn a representation invariant to local
translation.

Besides translation, however, learning invariant fea-
tures for other types of image transformations have
not been extensively studied. In contemporary work
of ours, Kivinen and Williams (2011) proposed the
transformation equivariant Boltzmann machine, which
shares a similar mathematical formulation to our mod-
els in that both try to infer the best matching fil-
ters by transforming them using linear transformation
matrices. However, while their model was motivated
from the “global equivariance”, the main purpose of
our work is to learn locally-invariant features that can
be useful in classification tasks. Thus, rather than
considering an algebraic group of transformation ma-
trices (e.g., “full rotations”), we focus on the variety
of local transformations that include rotation, trans-
lation as well as scale variations. Furthermore, we
effectively address the boundary effects that can be
highly problematic in scaling and translation operators
by forming a non-square T matrix, rather than zero-
padding.5 In addition, we present a general framework
of transformation-invariant feature learning and show
extensions based on the autoencoder and sparse cod-
ing. Overall, our argument is strongly supported by
the state-of-the-art performance in image and audio
classification tasks.

As another related work, feature learning methods
with topographic maps can also learn invariant repre-
sentations (Hyvärinen et al., 2001; Kavukcuoglu et al.,
2009). Compared to these methods, our model is more
compact and has fewer parameters to train since it fac-
tors out the (filter) weights and their transformations.
In addition, given the same number of parameters, our
model can represent more diverse and variable input
patterns than topographic filter maps.

5. Experiments

We begin by describing the notation. For images, we
assume a receptive field size of r × r pixels (for input
image patches) and a filter size of w × w pixels. We
define gs to denote the number of pixels corresponding
to the transformation (e.g., translation or scaling). For
example, we translate the w×w filter across the r× r
receptive field with a stride of gs pixels (Figure 2(a)),
or scale down from (r−l·gs)×(r−l·gs) to w×w (where
0 ≤ l ≤ b(r − w)/gsc) by sharing the same center for

5We observed that learning with zero-padded squared
transformation matrices showed significant boundary ef-
fect in its visualization of filters, and this often resulted in
significantly worse classification performance.
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Figure 2. Translation and scale transformations on images.

the filter and the receptive field (Figure 2(b)).

For classification tasks, we used the posterior probabil-
ity of the pooled hidden unit (Equation (10)) as a fea-
ture. Note that the dimension of the extracted feature
vector for each image patch is K, not K × S. Thus,
we argue that the performance gain of the TIRBM
over the regular RBM comes from the better represen-
tation (i.e., transformation-invariant features), rather
than from the classifier’s use of higher-dimensional fea-
tures.

5.1. Handwritten digit recognition with prior
transformation information

First, we verified the performance of our algorithm on
the variations of a handwritten digit dataset, assum-
ing that the transformation information is given. From
the MNIST variation datasets (Larochelle et al., 2007),
we tested on “mnist-rot” (rotated digits, referred to as
rot) and “mnist-rot-back-image” (rotated digits with
background images, referred to as rot-bgimg). To fur-
ther evaluate with different types of transformations,
we created four additional datasets that contain scale
and translation variations with and without random
background (referred to as scale, scale-bgrand, trans,
and trans-bgrand, respectively).6 Some examples are
shown in Figure 3.

For these datasets, we trained sparse TIRBMs on
the image patches of size 28 × 28 pixels with data-
specific transformations. For example, we considered
16 equally-spaced rotations (i.e., the step size of π

8 )
for the rot and rot-bgimg datasets. Similarly, for the
scale and scale-bgrand datasets, we generated scale-
transformation matrices with w = 20 and gs = 2,
which can map from (28 − 2l) × (28 − 2l) pixels to
20 × 20 pixels with l ∈ {0, ..., 4}. For the trans and
trans-bgrand datasets, we set w = 24 and gs = 2
to have total nine translation matrices that cover the

6We followed the generation process described in
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.
cgi/Public/MnistVariations to create the customized
scaled and translated digits. For example, we randomly
selected the scale-level uniformly from 0.3 to 1 or the
number of pixel shifts in horizontal and vertical directions
without making any truncation of the foreground pixels.
For the datasets with random background, we randomly
added the uniform noise in [0, 1] to the background pixels.

Table 1. Test classification error on MNIST transformation
datasets. The best-performing methods for each dataset
are shown in bold.

Dataset RBM TIRBM Transformation

rot 15.6% 4.2% rotation
rot-bgimg 54.0% 35.5% rotation
scale 6.1% 5.5% scaling
scale-bgrand 32.1% 23.7% scaling
trans 15.3% 9.1% translation
trans-bgrand 57.3% 43.7% translation

(a) basic (b) rot (c) scale (d) trans

(e) TIRBM on mnist-rot (f) RBM on mnist-rot

Figure 3. (top) Samples from the handwritten digit
datasets with (a) no transformations, (b) rotation, (c) scal-
ing, and (d) translation. (bottom) Learned filters from
mnist-rot dataset with (e) the sparse TIRBM and (f) the
sparse RBM, respectively.

28× 28 regions using 24× 24 pixels with a horizontal
and vertical stride of 2 pixels. For classification, we
trained 1, 000 filters for both sparse RBMs and sparse
TIRBMs and used a softmax classifier. We used 10,000
examples for the training set, 2,000 examples for the
validation set, and 50,000 examples for the test set.

As reported in Table 1, our method (sparse TIRBMs)
consistently outperformed the baseline method (sparse
RBMs) for all datasets. These results suggest that the
TIRBMs can learn better representations for the fore-
ground objects by transforming the filters. It is worth
noting that our error rates for the mnist-rot and mnist-
rot-back-image datasets are also significantly lower
than the best published results obtained with stacked
denoising autoencoders (Vincent et al., 2010) (9.53%
and 43.75%, respectively).

For qualitative evaluation, we visualize the learned fil-
ters on the mnist-rot dataset trained with the sparse
TIRBM (Figure 3(e)) and the sparse RBM (Fig-
ure 3(f)), respectively. The filters learned from sparse
TIRBMs show much clearer pen-strokes than those
learned from sparse RBMs, which partially explains

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
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(a) sparse RBM (baseline)

(b) sparse TIRBM with translation

(c) sparse TIRBM with rotation

(d) sparse TIRBM with scaling

Figure 4. Visualization of filters trained with RBM and
TIRBMs on natural images. We trained 24 filters and used
nine translations with a step size of 1 pixel, five rotations
with a step size of π/8 radian, and two-level scale transfor-
mations with a step size (gs) of 2 pixels, respectively.

the impressive classification performance.

5.2. Learning invariant features from natural
images

For handwritten digit recognition in the previous sec-
tion, we assumed prior information on global trans-
formations on the image (e.g., translation, rotation,
and scale variations) for each dataset. This assump-
tion enabled the proposed TIRBMs to achieve signifi-
cantly better classification performance than the base-
line method, since the data-specific transformation in-
formation was encoded in the TIRBM.

However, for natural images, it is not reasonable to as-
sume such global transformations due to the complex
image structures. In fact, recent literature (Yu et al.,
2011; Lee et al., 2011; Vincent et al., 2008) suggests
that some level of invariance to local transformations
(e.g., few pixel translation or coordinate-wise noise)
leads to improved performance in classification. From
this viewpoint, it makes more sense to learn represen-
tations with local receptive fields that are invariant
to generic image transformations (e.g., small amounts
of translation, rotation, and scaling), which does not
require data-specific prior information.

We visualize the learned TIRBM filters in Figure 4,
where we used the 14×14 natural image patches taken
from the van Hateren dataset (van Hateren & van der
Schaaf, 1998). The baseline model (sparse RBM)
learns many similar vertical edges (Figure 4(a)) that
are shifted by a few pixels, whereas our methods can
learn diverse patterns, including diagonal and horizon-
tal edges, as shown in Figure 4(b), 4(c), and 4(d).

Table 2. Test classification accuracy on CIFAR-10 dataset.
1,600 filters were used unless otherwise stated. The num-
bers with † and ‡ are from (Coates et al., 2011) and (Coates
& Ng, 2011a), respectively.

Methods (Linear SVM) Accuracy

sparse RBM† (baseline) 72.4%
sparse TIRBM (scaling only) 76.8%
sparse TIRBM (rotation only) 77.7%
sparse TIRBM (translation only) 77.5%
sparse TIRBM (combined) 78.8%
sparse TIRBM (combined, K= 4,000) 80.1%
TIOMP-1/T (combined) 80.7%
TIOMP-1/T (combined, K= 4,000) 82.2%

VQ (K= 4,000)† 79.6%
OMP-1/T (K= 1,600)‡ 79.4%
OMP-1/T (K= 6,000)‡ 81.5%

convolutional DBN (Krizhevsky, 2010) 78.9%
deep NN (Ciresan et al., 2011) 80.5%
deep NN (Coates & Ng, 2011b) 82.0%

Table 3. Test classification accuracy on STL-10. 1,600 fil-
ters were used for all experiments.

Methods (Linear SVM) Acc.± std.

sparse RBM 55.0± 0.5%
sparse TIRBM (scaling only) 55.9± 0.7%
sparse TIRBM (rotation only) 57.0± 0.7%
sparse TIRBM (translation only) 57.8± 0.5%
sparse TIRBM (combined) 58.7± 0.5%

VQ (K= 1,600) (Coates & Ng, 2011a) 54.9± 0.4%
SC (K= 1,600) (Coates & Ng, 2011a) 59.0± 0.8%
deep NN (Coates & Ng, 2011b) 60.1± 1.0%

These results suggest that TIRBMs can learn diverse
sets of filters, which is reminiscent of the effects of con-
volutional training (Kavukcuoglu et al., 2010). How-
ever, our model is much easier to train than convolu-
tional models, and it can further handle generic trans-
formations beyond translations.

5.3. Object recognition

We evaluated on image classification tasks using two
datasets. First, we tested on the widely used CIFAR-
10 dataset (Krizhevsky, 2009), which is composed of
50,000 training and 10,000 testing examples with 10
categories. Rather than learning features from the
whole image (32 × 32 pixels), we trained TIRBMs on
local image patches while keeping the RGB channels.
As suggested by Coates et al.(2011), we used the fixed
filter size w = 6 and determined the receptive field size
depending on the types of transformations.7 Then, af-
ter unsupervised training with TIRBM, we used the
convolutional feature extraction scheme, also follow-
ing the Coates et al.(2011). Specifically, we computed
the TIRBM pooling-unit activations for each local r×r

7For example, we used r = 6 for rotations. For both
scale variations or translations, we used r = 8 and gs = 2.
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pixel patch that was densely extracted with a stride of
1 pixel, and averaged the patch-level activations over
each of the 4 quadrants in the image. Eventually, this
procedure yielded 4K-dimensional feature vectors for
each image, which were fed into an L2-regularized lin-
ear SVM. We performed 5-fold cross validation to de-
termine the hyperparameter C.

For comparison to the baseline model, we separately
evaluated the sparse TIRBMs with a single type of
transformation (translation, rotation, or scaling) us-
ing K = 1, 600. As shown in Table 2, each single
type of transformation in TIRBMs brought a signifi-
cant performance gain over the baseline sparse RBMs.
The classification performance was further improved
by combining different types of transformations into a
single model.

In addition, we also report the classification results
obtained using TIOMP-1 (see Section 3.4) for unsu-
pervised training. In this experiment, we used the fol-
lowing two-sided soft thresholding encoding function:

fj = max
s

{
max(wT

j Tsv − α, 0)
}

fj+K = max
s

{
max(−wT

j Tsv − α, 0)
}
,

where α is a constant threshold that was cross-
validated. As a result, we observed about 1% im-
provement over the baseline method (OMP-1/T) using
1,600 filters, which supports the argument that our
transformation-invariant feature learning framework
can be effectively transferred to other unsupervised
learning methods. Finally, by increasing the number of
filters (K= 4,000), we obtained better results (82.2%)
than the previously published results using single-layer
models, as well as those using deep networks.

We also performed the object classification task on
STL-10 dataset (Coates et al., 2011), which is more
challenging due to the smaller number of labeled train-
ing examples (100 per class for each training fold).
Since the original images are 96×96 pixels, we down-
sampled the images into 32×32 pixels, while keeping
the RGB channels. We followed the same unsuper-
vised training and classification pipeline as we did for
CIFAR-10. As reported in Table 3, there were con-
sistent improvements in classification accuracy by in-
corporating the various transformations in learning al-
gorithms. Finally, we achieved 58.7% accuracy using
1,600 filters, which is competitive to the best published
single layer result (59.0%).

5.4. Phone classification

To show the broad applicability of our method to other
data types, we report the 39-way phone classification

Table 4. Phone classification accuracy on the TIMIT core
test set using linear SVMs.

Methods (Linear SVM) Accuracy

MFCC 68.2%
sparse RBM 76.3%
sparse TIRBM 77.6%

sparse coding (Ngiam et al., 2011) 76.8%
sparse filtering (Ngiam et al., 2011) 75.7%

Table 5. Phone classification accuracy on the TIMIT core
test set using RBF-kernel SVMs.

Methods (RBF-kernel SVM) Accuracy

MFCC (baseline) 80.0%
MFCC + TIRBM (K= 256) 81.0%
MFCC + TIRBM (K= 512) 81.5%

MFCC + SC (Ngiam et al., 2011) 80.1%
MFCC + SF (Ngiam et al., 2011) 80.5%
MFCC + CDBN (Lee et al., 2009) 80.3%

H-LMGMM (Chang & Glass, 2007) 81.3%

accuracy on the TIMIT dataset. By following (Ngiam
et al., 2011), we generated 39-dimensional MFCC fea-
tures and used 11 contiguous frames of them as an
input patch. For TIRBMs, we applied three temporal
translations with the stride of 1 frame.

First, we compared the classification accuracy using
the linear SVM to evaluate the performance gain com-
ing from the unsupervised learning algorithms, by fol-
lowing the experimental setup in (Ngiam et al., 2011).8

As reported in Table 4, the TIRBM showed an im-
provement over the sparse RBM, as well as the sparse
coding and sparse filtering.

In the next setting, we used the RBF-kernel SVM
(Chang & Lin, 2011) on the extracted features that
are concatenated with MFCC features. We used de-
fault RBF kernel width for all experiments and per-
formed cross-validation on the C values. As shown in
Table 5, combining MFCC with TIRBM features was
the most effective and resulted in 1% improvement in
classification accuracy over the baseline MFCC fea-
tures. By increasing the number of TIRBM features
to 512, we were able to beat the best published results
on the TIMIT phone classification tasks using hierar-
chical LM-GMM classifier (Chang & Glass, 2007).

6. Conclusion and Future Work

In this work, we proposed novel feature learning algo-
rithms that can achieve invariance to the set of pre-
defined transformations. Our method can handle gen-
eral transformations (e.g., translation, rotation, and

8We used K = 256 with a two-sided encoding func-
tion by using the positive and negative weight matrices
[W,−W], as suggested by Ngiam et al. (2011).
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scaling), and we experimentally showed that learn-
ing invariant features for such transformations leads
to strong classification performance. In future work,
we plan to work on learning transformations from the
data and combine it with our algorithm. By automat-
ically learning transformation matrices from the data,
we will be able to learn more robust features, which
will potentially lead to significantly better feature rep-
resentations.
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