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Abstract
We propose a novel batch active learning method
that leverages the availability of high-quality and
efficient sequential active-learning policies by
approximating their behavior when applied for
k steps. Specifically, our algorithm uses Monte-
Carlo simulation to estimate the distribution of
unlabeled examples selected by a sequential pol-
icy over k steps. The algorithm then selects
k examples that best matches this distribution,
leading to a combinatorial optimization problem
that we term “bounded coordinated matching”.
While we show this problem is NP-hard, we
give an efficient greedy solution, which inherits
approximation bounds from supermodular min-
imization theory. Experiments on eight bench-
mark datasets show that the proposed approach
is highly effective.

1. Introduction
In this paper, we consider active learning of classification
functions. We are given an initial set of m labeled exam-
ples Dl = {(x1, y1), (x2, y2), . . . , (xm, ym)}, where yi is
the target label for input xi. In addition, we are given a pool
of n unlabeled inputs Du = {x1, x2, . . . , xn} for which
the labels can be queried. The problem of active learning
is to select the most informative examples (queries) from
Du to be labeled, so that the accuracy of the classifier in-
creases quickly as the set of labeled examples grows. Ac-
tive learning typically works in iterations, where each it-
eration builds a classifier based on the current training set,
and then selects the examples to be labeled. The labeled
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examples will then be added to the training set and this
procedure is repeated until we reach a good model or we
exceed the labeling budget. Much existing active learning
work has focused on a sequential instance of this frame-
work where one example is selected to be labeled in each
iteration. A number of sequential active learning methods
have been developed that yield substantial empirical gains
over their passive learning counterparts, including simple
strategies such as the minimum margin and maximum un-
certainty principles (Settles, 2009).

Batch active learning differs from sequential methods by
selecting a batch of k > 1 examples to be labeled at each
iteration (Hoi et al., 2006b; Brinker, 2003; Guo & Schu-
urmans, 2007). This batch-mode of active learning is of-
ten preferable to sequential methods when each label takes
substantial time but can be produced in parallel. Such sce-
narios may arise when labels require running wet lab ex-
periments, careful human analysis, or expensive computa-
tional processes.

A naive approach to batch active learning is to simply ap-
ply an existing sequential selection rule k times to generate
a batch, e.g. selecting the k minimum margin examples.
This approach, however, will often perform poorly since
it will tend to ignore redundancy among selected exam-
ples. To address this issue, there has been a small amount
of work on batch active learning, which provides differ-
ent heuristic approaches for incorporating batch diversity
into the selection method. For example, Brinker (2003) in-
troduced an SVM-based batch approach, which selects a
batch that minimizes the margin of the selected examples
while maximizing their diversity. Hoi et al. (2006b; 2006a)
chose a batch of examples that effectively maximizes the
Fisher information of a classification model, which leads
to a trade-off between uncertainty and diversity. Guo and
Schuurmans (2007) posed batch active learning as a com-
plex optimization problem that maximizes the discrimina-
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tive classification performance while taking into consider-
ation the unlabeled examples. Unfortunately the resulting
optimization problem is non-convex and requires heuris-
tic fixes involving many parameters to work effectively.
Recently, Guo (2010) introduced an approach that selects
a batch of examples that maximizes the mutual informa-
tion between unlabeled and labeled examples. The pro-
posed combinatorial optimization problem is NP-hard and
a heuristic algorithm is introduced to produce a solution.

This paper considers a general approach for batch active
learning, which we refer to as “simulation matching”. We
are motivated by the observation that sequential methods
are generally more example-efficient than their batch coun-
terparts, since each example is selected with more informa-
tion. Indeed in theory the best sequential strategy will never
be worse than the best batch strategy, since one could sim-
ulate the batch approach and then select the examples se-
quentially. Leveraging the availability of highly-effective
sequential active learning methods, we view a given se-
quential method as a gold-standard whose performance, in
terms of label efficiency, we would like to approach using
batch selection. That is, we aim to come close to the per-
example accuracy improvement of the sequential method
but in less time (fewer iterations) via batch selection.

For this purpose, we use Monte-Carlo simulation to esti-
mate the posterior distribution over examples selected by
the sequential method, and then select a batch of k exam-
ples that “best matches” this distribution. A key contribu-
tion of our work is to instantiate the notion of “best match”
by developing a novel matching objective called bounded
coordinated matching. While we show that optimizing the
objective is NP-Hard, we introduce an efficient greedy al-
gorithm that optimizes the objective with an approximation
bound. Our proposed algorithm is simple to implement and
its scalability in terms of the number of unlabeled exam-
ples is similar to the base sequential policy. Experiments on
eight benchmark datasets with different batch sizes demon-
strate that the proposed approach is highly effective.

2. Simulation Matching for Batch Selection
Given a dataset Dl of labeled examples, we now consider
how to select the next batch of k examples to be labeled.
A key issue in making this choice is to manage the trade-
off between selecting examples that individually look most
informative for learning versus selecting a diverse set of ex-
amples. For instance, a common measure of informative-
ness is the margin, or class uncertainty, of an example with
respect to the currently learned classifier. However, picking
the top k most informative examples under such measures
will often select clusters of nearby examples that are quite
redundant. Previous work on batch active learning has con-
sidered various objective functions for capturing this trade-

off and then searches for batches that approximately opti-
mize those objectives.

In this work, we follow a different approach motivated
by the fact that sequential active learning has been widely
studied and a variety of computationally efficient and em-
pirically effective sequential policies exist. For example,
selecting the example with highest class uncertainty is of-
ten a simple yet highly effective baseline approach. The
main idea behind our batch approach is to leverage such se-
quential policies by selecting a batch of k > 1 samples that
“closely matches” the sequential policy’s expected behav-
ior. This idea has been explored recently for the very differ-
ent problem of batch Bayesian optimization (Azimi et al.,
2011). In that work, it was also the case that good sequen-
tial policies were available. However, since that work was
focused on function optimization, the notion of “closely
matching” used there is not suitable for active learning. The
main contribution of our work is to develop a principled
adaptation of the approach to batch active learning and to
demonstrate its effectiveness.

2.1. Sequential Policy Simulation

Let π be a sequential active learning policy. Given a set of
labeled examplesDl and unlabeled examplesDu, π returns
the next example x ∈ Du to be labeled. We would like to
“closely match” the behavior of π when applied for k steps.
However, without the labels of the selected instance, we do
not know how π would behave after the first example is
selected. In particular, different label outcomes will likely
lead π to select a different set of k examples. In this work,
we assume the availability of a posterior distribution of the
labels of any example x given Dl, which can be estimated
using a probabilistic classifier. A k-step executions of π
will result in a set of k selected examples from Du. Let
Skπ be the random variable denoting the set of k examples
resulting from such a k-step execution of π, which has a
well defined distribution P kπ (·) over the subsets of Du.

Importantly, it is generally straightforward to use Monte-
Carlo simulation to draw samples of Skπ . For example, this
can be done by starting with Dl and selecting the first ex-
ample x1 using π. Then, we realize y1, the class label of
x1, by sampling from the label posterior distribution of x1.
This simulated labeled example is then added toDl and the
process repeats for k − 1 additional iterations to obtain a
total of k examples. Our batch policy is based on generat-
ing a number of samples of Skπ , which are used to define an
objective for optimizing a batch of k experiments. Below
we derive this objective and describe its optimization.

2.2. Coordinated Matching Objective

Our goal is to select a batchB of k unlabeled examples that
best “matches the behavior” of a base sequential policy π
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conditioned on the currently labeled examples. More pre-
cisely, we consider a batch B to be a good match if it has
high probability (relative to other sets) under the dataset
distribution P kπ . Unfortunately, for all but trivial sequen-
tial policies π, there will be no closed form for P kπ , which
makes it challenging to directly optimize the probability of
B. Thus, our approach is to first approximate P kπ via a
simpler distribution Qk that captures essential aspects of
P kπ and then return the batch B that is optimized under Qk.

Matching Mixture Model. One naive choice for Qk

would be to represent it as a latent mixture model, e.g.
a Gaussian mixture model, from which k i.i.d. examples
are drawn in order to produce a batch. While estimating
such a model based on samples of Skπ would be relatively
straightforward, e.g. via an EM algorithm, it would gen-
erally produce poor results. In particular, the i.i.d. na-
ture of the model would typically assign high probability
to batches containing redundant examples arising from the
most probable Gaussian component. This fails to capture
the highly dependent nature of examples in Skπ , which will
typically avoid such redundancy.

In order to partially capture the dependencies in Skπ , we
use a variant of the Gaussian Mixture Model (GMM),
which we call the k-Matching Mixture Model (k-MMM).
Similar to GMMs, a k-MMM model consists of a set
of k n-dimensional Gaussian with mean vectors µ =
{µ1, . . . , µk} and covariance matrices Σ = {Σ1, . . . ,Σk}.
In contrast to the i.i.d generative process assumed by
GMMs, a k-MMM generates a set of k points by sampling
one point from each of the k components.

Given a k-MMM model and a set of k points S =
{x1, . . . , xk}, there are k! possible ways that S can be gen-
erated, each corresponding to one possible matching of the
k points to the k components. Given such a matching m,
let m(i) denote the index of the model component that is
matched to point xi and letM denote the set of all possible
matchings. Assuming a uniform prior over possible match-
ings, the probability of observing S given a k-MMM Qk

can be written as:

Qk(S) =
∑
m∈M

Qk(S,m)

=
1

k!

∑
m∈M

Qk(S | m)

=
1

k!

∑
m∈M

k∏
i=1

f(xi;µm(i),Σm(i)),

(1)

where f is the Gaussian PDF.

Importantly, unlike an i.i.d. model, the point sets generated
by Qk can be highly dependent since there is a strict re-

quirement that each component generates exactly a single
point. In our application, this is useful in that it can cap-
ture distributions that assign higher probability to diverse
datasets, which is a typical characteristic of P kπ .

Estimating Qk. We now wish to select a k-MMM model
Qk that best approximates our target distribution P kπ . To
simplify this estimation problem, in this work, we limit
our attention to models where the means are selected from
the unlabeled examples Du and all of the Σi are equal to
a known Σ1. Under these assumptions, we can view the
problem of selecting Qk as a combinatorial problem of se-
lecting the best subset of k points µ = {µ1, . . . , µk} from
Du to serve as the component means. We will let Qkµ de-
note our model for a particular set µ. Our optimization
objective is now to find the set µ that minimizes the KL-
divergence KL(P kπ ||Qkµ), which is equivalent to minimiz-
ing the cross-entropy between the distributions given by
H(P kπ , Q

k
µ) = E

[
− logQkµ(Skπ)

]
.

The resulting minimization problem is intractable due to
the complicated nature of P kπ . However, we can sample
from this distribution using simulation as described previ-
ously and generate a set of samples S = {S1, . . . , SN},
which can be used to approximate the expectation. Let Uk

be the set of all size-k subsets of unlabeled examples inDu,
our optimization objective can be formulated as follows.

arg min
µ∈Uk

H(P kπ , Q
k
µ) ≈ arg max

µ∈Uk

N∑
i=1

logQkµ(Si)

= arg max
µ∈Uk

N∑
i=1

log
∑
m∈M

Qkµ(Si,m)

To further simplify the above objective, we note that
for the purpose of maximizing over the means µ,∑
m∈MQkµ(Si,m) can be reasonably approximated by

maxm∈MQkµ(Si,m). This is because the value of
Qkµ(Si,m) decays very quickly for non-optimal matchings,
since such matchings will typically assign a data point in Si
to a component with a distant mean. Thus, our objective is
approximated by:

arg max
µ∈Uk

N∑
i=1

log max
m∈M

Qkµ(Si,m)

= arg max
µ∈Uk

N∑
i=1

max
m∈M

logQkµ(Si,m)

= arg min
µ∈Uk

N∑
i=1

min
m∈M

k∑
j=1

dΣ(xij , µm(j))

(2)

where xij is the j-th example in set Si, and the distance

1Generally speaking, the values of the Σi may be set within a
cross validation process, or via standard heuristic rules.
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Algorithm 1 Greedy Supermodular Minimization Algo-
rithm
Require:Set function g, Finite set A.
Ensure:µ ⊆ A such that |µ| = k

µ← A
while |µ| > k do
x← arg minx∈µ g(µ \ x)
µ← µ \ x

end while
return µ

dΣ(x1, x2) = (x1−x2)′Σ−1(x1−x2) can be interpreted as
the cost of matching x1 to x2. In our experiments, we use
the identity matrix for Σ, resulting in Euclidean distance.

The above objective corresponds to a novel optimiza-
tion problem that we call Bounded Coordinated Match-
ing (BCM). Given a particular choice of µ, we find the
minimum cost matching between µ and each set Si ∈
S. The overall cost of µ is the sum of all N costs, i.e.∑N
i=1 minm∈M

∑k
j=1 dΣ(xij , µm(j)) . The bounded co-

ordinated matching problem involves finding the µ that
achieves minimum overall cost. Since minimum cost
matchings between two sets can be found in polynomial
time via the Hungarian algorithm, the overall cost for any
µ can be computed efficiently. Unfortunately, the problem
of finding the optimizing set µ is NP-complete.

Theorem 1. BCM is NP-complete (see appendix for the
proof).

Fortunately, BCM allows for certain approximation guar-
antees to be made for a simple greedy algorithm, which we
present in Section 3.

Summary of Approach. To summarize, our overall ap-
proach is as follows. First, we use simulation to generateN
independent sample trajectories S1, · · · , SN of a sequential
active learning policy (we use the maximum entropy policy
in our experiments). Second, we approximate the distribu-
tion generating these trajectories by Qkµ where the set µ is
found by approximately optimizing Objective (2) (see next
section for the optimization approach). Finally, given Qkµ
we select a batch of k unlabeled data points B such that
B = arg maxB maxm∈MQkµ(B,m). Since we limited
the choice of µ to subsets of the unlabeled data, it is easily
verified that B is simply equal to µ, which is returned as
the batch of examples for which to request labels.

3. Optimization Approach
In this section we present a greedy approximation algo-
rithm for BCM motivated by theoretical results on the min-
imization of non-increasing, supermodular set functions.

3.1. Greedy Approximation Algorithm

Definition 1. Given a finite set A, a function on subsets of
A, g : 2A → R+ is supermodular if for all A1 ⊆ A2 ⊆ A
and x ∈ A\A2, it holds that g(A1)−g(A1∪x) ≥ g(A2)−
g(A2 ∪ x).
In other words, a supermodular function demonstrates “di-
minishing returns” because adding an element to set A ⊆
A decreases the value of g(·) by at most as much as adding
the element to a subset of A. In addition, a set function
is non-increasing if for any set A and element x we have
g(A) ≥ g(A ∪ {x}). It turns out that the problem of find-
ing a size k subset of A that minimizes a non-increasing
supermodular function g(·) can be approximately solved
via a simple greedy algorithm. Algorithm 1 outlines this
approach, which simply starts with all elements of A and
iteratively removes the element whose removal leads to the
smallest increase in g(·) until only k elements remain. We
have the following known guarantee.
Theorem 2. (Il’ev, 2001) Let g(·) be a monotonic non-
increasing supermodular function over subsets of the finite
set A, |A| = m and g(A) = 0. Let µ be the set of the
elements returned by the greedy algorithm 1 s.t |µ| = k,
q = m− k and µ∗ = argminµ′⊆A,|µ′|=k g(µ′), then

g(µ) ≤ 1

t

[(
q + t

q

)q
− 1

]
g(µ∗) ≤ et − 1

t
g (µ∗) (3)

where t is the steepness parameter of function g(·) which is
defined as:

t =
s

s− 1
s.t.

s = max
x∈A

(g(∅)− g(x))− (g(A \ x)− g(A))

g(∅)− g(x)

(4)

Notice that the approximation bound involves the steep-
ness parameter t of g(·), which characterizes the rate of
decrease of g(·). This is unavoidable because achieving
a constant factor approximation guarantee is not possible
unless P=NP (Nemhauser & Wolsey, 1999). Furthermore,
this bound has been shown to be tight for any t (Il’ev,
2001). Note that this is in contrast to guarantees for greedy
maximization of submodular functions (G. L. Nemhauser
& Fisher, 1978) for which there are constant factor guar-
antees. In addition, the greedy algorithm we use is quali-
tatively different from the one used for submodular maxi-
mization, since it greedily removes elements from µ rather
than greedily adding elements to µ.

The objective function corresponding to the BCM opti-
mization problem (2) is the following function over subsets
µ of the unlabeled data points Du:

g(µ) =

N∑
i=1

min
m∈M

k∑
j=1

dΣ(xij , µm(j)) (5)
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The BCM problem corresponds to minimizing this function
subject to |µ| = k. It is easily verified that this objective
is a non-increasing supermodular function of µ. Further,
since the points xij in the objective are elements of Du,
we have that g(Du) = 0. Therefore, g(·) satisfies all of
the properties for Theorem 2 and the greedy algorithm pro-
vides the corresponding guarantee. Thus, we use the above
greedy algorithm applied to the function g(·) and set Du as
our BCM optimizer, i.e. A = Du in Algorithm 1.

3.2. Accelerated Greedy Algorithm

Each iteration of the greedy algorithm requires evaluat-
ing the cost function (Equation 5) for removing each ele-
ment x from the current set µ, which is at most the size
of Du. Each cost function evaluation involves finding N
minimum cost matchings, between each of the Si and µ\x
(when µ \ x is larger than Si, some elements of µ are un-
matched), which can be done via N calls to the Hungarian
algorithm. While polynomial, for a naive implementation,
each iteration can be computationally expensive when Du
is large. Fortunately, there are at least three ways to soundly
speedup the computation, leading to drastic time reductions
in our experience and allowing the computation to be inde-
pendent of the size of Du.

First, let µ be the current set and µi ⊆ µ be the set of ele-
ments in µ that are matched to Si in the minimum match-
ing. It is easy to verify that g(µ) = g(∪iµi). This obser-
vation implies that instead of initializing µ to be the entire
unlabeled data set Du, we can soundly initialize µ to be
µ0 = ∪iSi since the minimum matching between Si and
Du must be Si itself. Thus, the time complexity of the
greedy algorithm under this initialization grows with the
size of µ0 (the number of data points generated during sim-
ulation, which is at most N · k), rather than the potentially
much larger Du. In other words, the run time of the greedy
algorithm is independent of the size of Du, which is often
quite large.

Second, for points x that are unpruned by the first rule,
we can often avoid computing g(µ \ x) by exploiting the
supermodularity property. This idea is analogous to a sim-
ilar speedup approach used for submodular maximization
(Krause et al., 2008). From Definition 1, we can directly
conclude that for A1 ⊆ A2 ⊆ A, g(A1 \ x) − g(A1) ≥
g(A2 \ x)− g(A2). We define the non-negative incremen-
tal difference of an instance x with respect to a set µ to be
δ(µ, x) = g(µ\x)−g(µ), which is the amount of increase
of our objective function after removing a sample x from
µ. Normally this incremental difference must be computed
for all x ∈ µ in each iteration. However, by maintaining
these incremental differences, we can often soundly avoid
recomputing a large majority of them in any given itera-
tion. The first iteration must compute the differences for

all points in µ. We then sort the points in increasing order
based on their incremental differences, and remove the first
point. For the following iteration, we move on to the next
point in the sorted list and recompute its incremental differ-
ence. If the value is still smaller than the remaining points,
we can immediately remove this point from µ and proceed
to the next iteration without recomputing any other differ-
ences. Otherwise, we proceed to evaluate the next points
in the sorted list until finding one whose recomputed dif-
ference is less than the other stored differences and remove
the point. The supermodular property guarantees that this
approach makes the same choices as the full greedy algo-
rithm, but effectively avoids a large number of difference
computations in practice.

Finally, for any point x that we need to compute its differ-
ence and hence evaluate g(µ\x), we can reduce the cost of
this computation by storing the set of maximum matchings
between µ and the Si. In particular, rather than recom-
puting the maximum matching between µ \ x and each Si
from scratch, we can start with the current matching to Si.
If the current matching does not involve x, then no recom-
puting is needed. Otherwise the matching can be updated
with a single shortest path computation. This results in a
reduction in time complexity at least by a factor of k com-
pared to running the full Hungarian algorithm for each Si.
Details are described in the supplementary material.

4. Scalability
The computation of our batch selection approach can be
divided into two stages: 1) Simulation of the sequential
policy, and 2) Solving the resulting BCM problem. As
the number of unlabeled data points n increases, the sim-
ulation time will also increase, since each simulation step
involves applying a sequential policy, which typically con-
siders each unlabeled point. For typical sequential policies,
including the one in our experiments, the time complexity
will grow linearly in n. Fortunately, theN simulations gen-
erated during the first stage are independent, which allows
for easy parallelization, possibly resulting in a time reduc-
tion of a factor of N . That is, with parallelization there
need not be any time overhead compared to running a typ-
ical sequential algorithm for k steps.

Further, as described previously the time complexity of the
second stage does not depend on n, but rather on N · k.
Overall, the scalability of the combined two stages in terms
of n is similar to the underlying sequential base policy.

5. Experimental Results
Datasets. In this section we evaluate our proposed batch
active learning method using eight binary classification
problems from the UCI machine learning repository (Asun-
cion & Newman, 2010) including (the number of sam-
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ples and attributes are shown in the parenthesis for each
dataset): Breast(569, 32), Ionosphere(351, 34), Pima(768,
8), German(1000, 24), Haberman(306, 3), Sonar(208, 60),
EF(1543, 16) and MN(1575, 16). The EF and MN datasets
are subsets of the original multi-class letter dataset, created
by retaining only letters E and F, M and N respectively.

Baseline Algorithms. To evaluate the efficacy of the pro-
posed algorithm, we compare our algorithm against four
baseline methods. For the first baseline, we consider
the Fisher Information approach by Hoi et al.(Hoi et al.,
2006b), one of the state-of-the-art methods in batch active
learning. This method selects a batch that maximizes the
Fisher information of a classification model (we use Kernel
logistic regression in our experiments). The second base-
line, which we call Maximum Uncertain, simply selects the
top k most uncertain (as measured by class entropy) ex-
amples to form the batch. This simple batch algorithm is
a commonly used baseline in batch active learning litera-
tures. We further include the “random” policy in our com-
parison, which has demonstrated very competitive perfor-
mance in prior batch active learning studies (Guo & Schu-
urmans, 2007). Finally, we also compare to the sequential
policy that selects the example with the highest class en-
tropy, which is also the base sequential method that our
simulation matching algorithm tries to match. Note that
we also compared our algorithm against SVM-D, which is
another batch selection algorithm based on the minimum
margin principle (Brinker, 2003). The results were not re-
ported here since it was consistently worse than other base-
line batch active learning approaches. Note that we were
not able to compare results to two recent batch active learn-
ing methods (Guo & Schuurmans, 2007), and (Guo, 2010)
because we were not able to acquire a working implementa-
tion of these algorithms, and both algorithms involve com-
plex optimization procedures that are non-trivial to imple-
ment and tune.

Experimental Setting. We use kernel logistic regression
with an RBF kernel (kernel width= 0.05) as our classifier
for all algorithms. We use N=20 simulated trajectories for
each batch selection and consider batch sizes of 10 and 20.
Each dataset is randomly divided into 70% training data
and 30% testing data. Active learning is initialize with five
random examples per class from train and iteratively se-
lects batches of unlabeled examples in train to query. The
classification accuracy is evaluated after each batch selec-
tion on the test data. The entire process is repeated for 50
independent runs and the average results are reported.

Evaluation. We show the classification accuracy of differ-
ent methods on the eight datasets in Figure 1(the batch size
is shown in the parenthesis for each dataset). The x−axis
indicates the number of queries and the y−axis represents
the classification accuracy. First, let us focus on comparing

our proposed method with the baseline batch methods in-
cluding Fisher Information and Maximum Uncertain. We
observe that, for most datasets, the learning curves pro-
duced by our method dominate the learning curves of the
other batch methods. This is true for both batch sizes, but
the improvements our method achieves is more significant
and consistent for larger batch size of 20. Interestingly, we
observe that Fisher Information and Maximum Uncertain
results are sometimes dominated by random. For example,
this is the case for Pima and German, where both methods
performed consistently worse than random for both batch
sizes. While surprising, this is actually consistent with
what have been observed in a previous batch active learn-
ing study (Guo & Schuurmans, 2007). This suggests that
it is actually non-trivial to design a batch active learning
method that performs competitively to random in a consis-
tent fashion. Notably, our proposed approach is the only
method in our comparison that demonstrated this robust-
ness, which is a highly desirable property of our method.
In addition, the variance of our approach is quite small in
our experiments. This is likely due to the average effect of
using a set of simulations, which are processed in aggre-
gate by the greedy optimizer. Among all data sets, Breast
data set has the highest variance which is 0.006 and 0.0074
for batch size 10 and 20 respectively.

We also observe that the sequential method generally out-
performs the batch methods (with a few exceptions) and
more significantly for batch size 20. This is aligned with
our expectation because a sequential approach makes more
efficient use of the labeled examples when making selec-
tion choices. Interestingly, our proposed method is able
to match the performance of sequential method reasonably
well for many datasets, and even sometimes outperform se-
quential (e.g., Ionosphere and Breast). We conjecture this
is due to the fact that our proposed method aggregates the
outcome of many simulations, which may reduce the vari-
ance of the base sequential active learning procedure.

Computational Time. We compute the CPU run time of
selecting a batch of 20 examples in one of our largest data
sets, MN, on a standard desktop computer with 2.13 GHz
CPU (dual core) and 2 GB of memory. It takes less than
3 minutes using an un-optimized Matlab implementation.
This time is reasonable for most applications of batch ac-
tive learning, where labeling time is generally significant.
As discussed previously, this time can be reduced via par-
allelization and will grow reasonably with the size of Du.

6. Conclusions
In this paper, we introduce a novel method for batch ac-
tive learning, which follows a recently proposed general
approach named “simulation matching”. The basic idea
behind simulation matching is to design batches of queries
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by imitating the behavior of a high-quality sequential pol-
icy via simulation. While this general approach has been
successfully applied to the problem of batch Bayesian op-
timization, the notion of “matching” used in prior work is
not suitable for active learning. We put forth a principled
adaptation of the simulation matching approach to batch
active learning. In essence, we consider Skπ , the set of
k points selected by sequential policy π, to be a random
variable. Because the distribution of Skπ is too complex to
directly estimate, we draw samples from this distribution
via simulation and approximate the distribution using a k-
Matching Mixture Model, which is then used to select the
batch. This results in a combinatorial optimization prob-
lem that we call “bounded coordinated matching” (BCM),
and we present an efficient algorithm that provides approx-
imation guarantees. We evaluate the proposed approach on
eight UCI datasets and the results show that our method is
highly competitive compared to baseline methods.

A. Proof of Theorem 1
Proof. Given S1, . . . , SN , where each Si contains a set of
k points {xij}kj=1, the BCM objective function is:

argmin
µ⊂Du:|µ|=k

N∑
i=1

min
m∈M

k∑
j=1

dΣ(xij , µm(j)) (6)

Consider the following graph representation of the prob-
lem. We define a weighted bipartite G = (U, V,E) where
V = {S1, S2, · · ·SN}, and U = Du representing the set
of unlabeled examples. E ⊆ U × V is an edge set where
the weight w(u, v) = dΣ(u, v). A coordinated matching
on G is a subset of edges E′ ⊆ E such that, for 1 ≤ i ≤ t,
(U × Si) ∩ E′ is a matching. The weight of a coordinated
matching E′ is w(E′) =

∑
(u,v)∈E′ w(u, v). Given G and

some integer k ≤ |U |, the bounded, coordinated matching
problem (BCM) asks for a minimum weight coordinated
matching such that the edges in the matching are, in to-
tal, incident to at most k vertices from U . Below we will
turn this minimization problem into an equivalent maxi-
mization problem by replacing all the weights in G such
that w′(u, v) = λ − w(u, v), where λ is a large constant
to ensure all positive w′ values. It is easy to see that the
solution of this maximization problem of BCM is also the
solution to the original minimization problem.

Focusing on the maximization problem, the decision ver-
sion of the problem augments G and k with a weight W
and asks if there exists a bounded, coordinated matching
with weight W . We show that the decision version of
maximizing BCM is NP-hard. We reduce from the well-
known 3-Dimensional Matching (3DM) problem which,
given a set T ⊂ X × Y × Z where X , Y , and Z are
disjoint and an integer k, asks if there exists a subset
M ⊆ T of size at least k such that for any two distinct

sets Mi,Mj ∈ M , Mi ∩ Mj = ∅. 3DM remains NP-
hard even when |X| = |Y | = |Z| = k (i.e. it becomes
an exact-cover problem). The reduction is the natural one:
create an unweighted, bipartite graphG = (U, V,E) where
V = X ∪Y ∪Z and U = {u1, . . . , uk} is a set of k nodes.
For every ti ∈ T where ti = {xi, yi, zi} add the edges
{ui, xi}, {ui, yi}, {ui, zi} to E. It’s clear that T has has a
3-dimensional matching of size k if and only if 〈G, k〉 has
a bounded, coordinated matching of weight 3k.
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Figure 1. The performance of the proposed algorithm.


