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Abstract

We study the problem of unsupervised do-
main adaptation, which aims to adapt classi-
fiers trained on a labeled source domain to an
unlabeled target domain. Many existing ap-
proaches first learn domain-invariant features
and then construct classifiers with them. We
propose a novel approach that jointly learn
the both. Specifically, while the method
identifies a feature space where data in the
source and the target domains are similarly
distributed, it also learns the feature space
discriminatively, optimizing an information-
theoretic metric as an proxy to the expected
misclassification error on the target domain.
We show how this optimization can be effec-
tively carried out with simple gradient-based
methods and how hyperparameters can be
cross-validated without demanding any la-
beled data from the target domain. Em-
pirical studies on benchmark tasks of object
recognition and sentiment analysis validated
our modeling assumptions and demonstrated
significant improvement of our method over
competing ones in classification accuracies.

1. Introduction

Supervised learning algorithms often assume that the
training and the test data are randomly sampled from
the same joint distribution. While the assumption
facilitates rigorous theoretical analysis and empirical
comparison of different algorithms, its validity is of-
ten challenged outside of laboratory settings. In real-
world applications, there are many factors causing a

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

mismatch between the training and the test data. For
instance, imagine developing a face detection system
for Facebook mobile users. A tuned classifier on im-
ages captured by webcams could be applied to images
from mobile phones. In this case, the imaging con-
ditions vary significantly due to background illumina-
tion, motion blurring, pose, etc.

Techniques for addressing learning problems with mis-
matched distributions are often referred as domain
adaptation, or sometimes transfer learning (Daumé III
& Marcu, 2006; Pan & Yang, 2010; Quiñonero-Candela
et al., 2009). The source domain refers to the labeled
training data, while the target domain refers to the
test data. When there is no labeled data from the
target domain to help learning classifiers, the problem
setting is termed unsupervised domain adaptation.

Unsupervised domain adaptation is especially chal-
lenging as the target domain does not provide explic-
itly any information on how to optimize classifiers.
Note that the objective of domain adaptation is to
derive a classifier for the unlabeled (target) data from
the labeled (source) data. This goal sets domain adap-
tation apart from semi-supervised learning, whose pri-
mary goal is to improve the performance on the la-
beled data with unlabeled data (Chapelle et al., 2006).
The difference is subtle yet fundamental. For example,
model selection or cross-validation using classification
accuracy on the target domain is generally impossible.

Existing approaches thus rely on making strong as-
sumptions on how the data distribution have shifted
between the two domains in order to derive classi-
fication rules for the target domain. For instance,
in covariate shift (Shimodaira, 2000; Bickel et al.,
2007; Huang et al., 2007), the marginal distributions
of the features are different across domains while the
posterior distribution of the label remains the same.
This naturally leads to a two-stage learning paradigm:
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the labeled instances from the source domain are
first weighted so as to compensate the difference in
marginal distributions. Then, a classifier is trained us-
ing the labels and then applied to the unlabeled data.

Other works have also followed similar paradigms (Pan
et al., 2011; Gopalan et al., 2011). In the structural
correspondence learning, the original features are first
augmented with features that are more likely to be do-
main invariant and then a classifier is trained (Blitzer
et al., 2006). The augmenting features are linear trans-
formation of the original features. Alternatively, in
deep learning architecture for domain adaptation, the
augmenting features are highly nonlinear transforma-
tion of the original ones (Glorot et al., 2011).

Underlying all these methods is the assumption that
there exists a domain-invariant feature space such that
the marginal distributions of two domains are the same
in the new feature space. Thus, classifiers learnt in the
new space will perform equally well on both the source
and the target. Theoretical analysis have showed that
the loss on the target domain for any labeling func-
tions depends on the difference between the marginal
distributions, thus justifying the need to identify a fea-
ture space such that the two domains look alike to each
other (Ben-David et al., 2007; Mansour et al., 2009).

We hypothesize that this view and practice of two-
stage learning are restrictive. One possible fallacy is
that maximizing the similarity in marginal distribu-
tions bear no direct consequence on (dis)similarities
between posterior distributions. Thus, if there are
multiple feature spaces where the source and the tar-
get domains have similar marginals, there is no reason
to believe that a classifier trained on an arbitrarily
chosen one would necessarily perform well on the tar-
get domain. As an extreme case, projecting features
into irrelevant feature dimensions would make the two
domains look very much alike!

Hence, the caveat is to retain discriminative informa-
tion for constructing classifiers while we search for the
domain-invariant feature space. This seems relatively
straightforward to achieve if all we care is the discrim-
inative information about the labels in the source do-
main. However, our main goal is to have good clas-
sifiers for the target domain. Thus, our challenge is
how to be discriminative without labels?

To address this challenge, we propose a novel learn-
ing algorithm for unsupervised domain adaptation. As
opposed to existing two-stage approaches where new
feature spaces and classifiers are separately optimized,
our approach combines the two in a single stage. More-
over, the new feature space is discriminative with re-

spect to the target domain. We give a brief account in
the following, leaving details to sections 2 and 3.

Main Idea We assume discriminative clustering,
namely, data in both the source and the target do-
mains are tightly clustered and clusters corresponds
class boundaries. For the same class, the clusters
from the two domains are geometrically close to each
other. Leveraging these assumptions, our formula-
tion of learning the optimal feature space balances two
forces: maximizing domain similarity that makes the
source and the target domains look alike, and (approx-
imately) minimizing the expected classification error
on the target domain. We define those two forces with
information-theoretical quantities: the domain simi-
larity being the negated mutual information between
all data and their binary domain labels (source ver-
sus target) and the expected classification error be-
ing the negated mutual information between the target
data and its clusters (ie class) labels estimated from
the source data. These two quantities are directly mo-
tivated by the nearest neighbor classifiers we use in the
new feature space.

We show how simple gradient-based methods can be
effectively used for numerical optimization to learn
the optimal feature space. We evaluated extensively
our approach on two benchmark tasks: visual object
recognition and sentiment analysis of product reviews.
On both of them, the proposed approach outperforms
other state-of-the-arts methods significantly.

Contributions To summarize, we contribute to do-
main adaptation by advocating discriminative clus-
tering as a possible mechanism for adaptation; cf.
section 2. We hypothesize that existing approaches
of two-stage learning can be significantly improved
by taking those cluster structures into consideration.
Thus, we propose an one-stage approach jointly learn-
ing a domain-invariant feature space and optimizing
information-theoretic metrics directly related to dis-
criminative classification on the target domain; cf. sec-
tion 3. Our empirical results support strongly our
modeling assumptions and hypothesis; cf. section 4.

2. Discriminative Clustering for
Domain Adaptation

At the core of our approach is the assumption of dis-
criminative clustering. Specifically, we assume that,
in a suitable feature space, 1) separation. Data in
the source and the target domains are discriminatively
clustered, where the cluster ids correspond to class la-
bels; 2) Alignment. The clusters from the two do-
mains that correspond to the same label are geomet-
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Adaptation?

?

?

Figure 1. Schematic illustration of our main idea on ex-
ploiting discriminative clustering for unsupervised domain
adaptation, cf. section 2. Data in the source domain
(within circle shapes) and the target domain (within oval
shapes) are tightly clustered, corresponding to their class
boundaries. Moreover, clusters from the two domains are
“aligned” if they correspond to the same class. Assum-
ing and exploiting such structures in the data, classifier
boundaries for the source domain (dashed lines in the left
diagram) are adapted discriminatively to the target do-
main (dashed lines in the right diagram), minimizing the
expected classification errors on the target domain. The
target data is then classified with adapted classifiers. See
section 3 for details on how the errors can be approximated
using information-theoretical quantities such as mutual in-
formation, without using labels.

rically close. Fig. 1 illustrates these two assumptions
and how they can be exploited for adaptation.

Arguably, the assumptions are more “relaxed” than
those in existing works for adaptation. Specifically,
they do not imply that the marginal distributions are
the same across domains and certainly do not imply
the same posterior distributions either. In fact, these
assumptions are readily satisfiable in applications.

For example, many datasets exhibit multi-modal
marginal distributions where the modes correspond to
class labels, particularly if these data are sampled from
a generative process of mixture models.

As we will show in the following, these two assump-
tions allow us to define quantitively what to be opti-
mized – in our case, we would like to identify a domain-
invariant feature space such that the expected misclas-
sification error on the target data is minimized. De-
spite the paucity in labels from the target domain, we
will show how the alignment assumption will allow
us to define a proxy to the error so as to be optimized.

3. Proposed Approach

In what follows, we are given N labeled instances from
the source domain: {(xs, ys)} where xs ∈ X ⊂ RD

and ys takes a value from C class labels: ys ∈ Y =
{1, 2, . . . ,C}. We also have M unlabeled instances from
the target domain: {xt} where xt ∈ X . For simplicity,
we assume xt and xs have the same domain X , thus

the same dimensionality. Extensions to more general
cases are possible, analogous to (Kulis et al., 2011).

Our objective is to construct a classifier f : x ∈ X →
y ∈ Y. We would like the classifier performs well on
the target domain DT from which xt is sampled. This
is inherently an ill-posed problem as we do not have
any labels from the target domain.

To overcome this difficulty, we leverage the discrimina-
tive clustering assumptions which we have previously
described. We assume that there is a latent feature
space z ∈ Rd such that i) data in the source and target
domains form well-separated clusters and the clusters
correspond to labels; ii) the clusters from the source
domain are geometrically close to those from the target
domain if they are from the same labels.

We show how these assumptions can be used to derive
information theoretical quantities which reflect data
characteristics in each domain. These quantities are
parameterized in terms of the latent feature which is
in turn a linear transformation of the original feature
x. We then show how to combine these quantities so
that the optimal linear transformation can be learnt
from data. We begin by describing a few key notions.

3.1. Conditional models in the feature space

We consider the latent feature space induced by a lin-
ear transformation L ∈ Rd×D. In the new feature
space, we use k-nearest neighbors (kNN) to classify
as we have assumed that data form well-separated
clusters. Moreover, we choose k = 1 to avoid cross-
validating this parameter.

The squared distance between two points xi and xj in
this feature space is thus given by

d2ij = ‖Lxi −Lxj‖22 = (xi − xj)
TM(xi − xj) (1)

where M = LTL defines a (low-rank) Mahalanobis
distance metric in the original space.

Given a point xi and a set of data points {xj}, we use
the following model

pij =
e−d

2
ij∑

j 6=i e
−d2

ij

(2)

to define the conditional probability of having xj as
xi’s nearest neighbor.

The above conditional model has been used in many
contexts, including metric learning (Goldberger et al.,
2004), dimensionality reduction (Hinton & Roweis,
2002), etc. Characterizing how close a point xi is to
other points, this model gives rise to an estimate of the
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posterior p(yi = c|xi) for labeling xi with the class la-
bel c, assuming the class labels of {xj} are known,

p̂ic =
∑
j 6=i

pijδjc (3)

where δjc is 1 if xj ’s label is c, and 0 otherwise. Since
pij is a normalized probability, p̂ic is normalized too.
For example, if the label of xi is known,

∑
c p̂icδic

would be the probability of correctly classifying xi.

3.2. Discriminative clustering in the source

To derive a classifier that can perform well on the tar-
get domain, we would certainly need the classifier to
perform well on the source domain because we have
assumed that the two domains share similar clustering
structures. Thus, our first desideratum is to minimize
the expected classification error on the source domain,
when we classify it using 1-NN. This error is estimated
using the empirical average of the leave-one-out accu-
racy for any given point xs in the source domain DS :

εs = 1− 1

N

∑
s

∑
c

p̂scδsc (4)

Note that, if we minimize this error only and ignore
the target domain, we will arrive at the metric learning
technique in (Goldberger et al., 2004).

3.3. Discriminative clustering in the target

Since we do not have labels on the target domain, we
cannot define the expected classification error as we
did in eq. (4) for the source domain. How to be dis-
criminative without using labels?

Consider an instance xt from the target domain and all
the instances {xs} from the source domain, the condi-
tional model pts of eq. (2) gives rise to the probability
of having a particular xs as the nearest neighbor of xt.
Using this conditional model as well as the source la-
bels to compute the posterior as in eq. (3) would not be
the correct posterior for the target domain. However,
if our assumptions about two sets of clusters being ge-
ometrically close indeed hold in the dataset, then the
estimation p̂tc should be close to the true posterior.

If p̂tc approximates the true posterior well and our as-
sumption that the target data is well clustered, then
we can reasonably expect that the C-dimensional prob-
ability vector p̂t = [p̂t1, p̂t2, . . . , p̂tC] should look like
an ideal posterior probability vector [0, 0, . . . , 1, . . . , 0]
where the only nonzero element 1 occurs at the posi-
tion corresponding to the correct label.

Since we do not know the true label, we cannot mea-
sure directly the similarity of p̂t to the correct and

ideal posterior vector. Nonetheless, we can express
our desideratum as reducing the entropy of p̂t such
that it contains the least amount of confusing labels.

Let H[p] denote the entropy of a probability vector
p. If we minimize

∑
tH[p̂t] only, we could arrive at

a degenerate solution where every point xt is assigned
to the same class. To avoid this, we instead maximize
the mutual information between the data and the es-
timated label Ŷ using p̂,

It(X; Ŷ ) = H[p̂0]− 1

M

∑
t

H[p̂t] (5)

and the prior distribution p̂0 is given by p̂0 =
1/M

∑
t p̂t. Note that using the empirical distribu-

tion of the labels in the source domain to estimate the
prior p̂0 could still lead to degenerate solutions when
the labels are uniformly distributed.

Minimizing the entropy (or similarly, maximizing the
mutual information) has been previously studied in
the context of (discriminative) clustering, cf. (Gomes
et al., 2010; Dhillon et al., 2003). This criterion will
identify a feature representation that classifiers can use
to achieve a low lower-bound of misclassification error,
due to Fano’s inequality (Fisher III & Principe, 1998).

3.4. Discriminability: source versus target

The previous discussion on discriminative clustering in
the target domain hinges on the assumption that clus-
ters for the source and the target domain should not
be too far from each other. We quantify this notion
more precisely in the following. Conceptually, this no-
tion is similar to the idea in existing works to make
marginal distributions similar across domains.

Why such notion is desirable? To use the source
domain’s labels as an proxy to estimate the poste-
rior probabilities for the target data (as in eq. (3)),
we would desire the source and the target domain
share some common probability supports in the feature
space. In particular, consider the case we classify two
instances xt and xt′ from the target domain. They are
deemed to have the same label c if there are plenty of
labeled source data in class c in their neighborhoods.
Then we would expect that with high likelihood, xt

and xt′ are in each other’s nearest neighbors too —
otherwise, the cluster corresponding to class c in the
target domain would not be very “tight”.

Having instances from both domains in xt’s nearest
neighborhoods thus entails the following. If we create
a binary classification problem and assign qi = 1 if xi

is from the source and qi = 0 if xi from the target,
then given xi, we cannot determine well above chance
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level where this instance comes from.

Instead of constructing an actual binary classifier, we
express our desideratum as minimizing the mutual in-
formation between the data instance X and its (bi-
nary) domain label Q. Analogous to eq. (5), the mu-
tual information is given by,

Ist(X;Q) = H[q̂0]− 1

N + M

∑
i

H[q̂i] (6)

where q̂i is the two-dimensional posterior probability
vector of assigning xi to either the source or the tar-
get, given all other data points from the two domains.
Concretely, the probability is computed according to
eq. (3), except the class label δjc being replaced by the
domain label of xj . The estimated prior distribution
q̂0 is computed as 1/(N + M)

∑
i q̂i.

One might wonder why we do not compute and mini-
mize the expected error as in the source domain classi-
fication eq. (4). This is because we would like to leave
some room for the possibility that a certain portion of
data in either domain could be “outliers” to the other
domain, and thus indeed distinguishable with respect
to their origins. Minimizing domain classification er-
ror would have the adverse effect of forcing the two
domains to be exactly the same. For instance, a de-
generate solution would be to map every point to the
origin of the feature space.

We mention in passing that it is found that the accu-
racy of a binary domain classifier reflects similarities
between domains (Blitzer et al., 2007), thus approxi-
mating the original intractable combinatorial measure
of similarities (Ben-David et al., 2007).

3.5. Learning and model selection

We have described three information-theoretical quan-
tities: classification accuracies on the source domain
εS of eq. (4), discriminative clustering on the target
It(X; Ŷ ) of eq. (5), and discriminability between the
source and the target Ist(X;Q) of eq. (6).

These quantities have been derived from our assump-
tions about the source and target domains, specifically,
the discriminative clustering structures. They are all
parameterized in the linear transformation L.

We learn the optimal L by balancing these quantities
with the following optimization problem

minimize − It(X; Ŷ ) + λIst(X;Q)

subject to Trace(LTL) ≤ d
(7)

where the constraint is to control the scale of distances
computed using L.

The regularization coefficient λ needs to be cross-
validated. We choose the optimal λ that attains the
minimum of εS . Intuitively, εS is defined on the source
domain with labeled data and thus, more sensible to
be used for model selection (Other ways of combining
these quantities were also experimented, though the
above performs the best in practice.)

We comment briefly on the difference between our for-
mulation and the entropy minimization framework for
semi-supervised learning (Grandvalet & Bengio, 2005).
Their goal is to reduce uncertainty of labeling the un-
labeled data. Thus, they use only the entropy term
eq (3). More distinctively, they do not need to make
the two domains look alike thus there is no need for
them to learn a feature space, nor to include a term to
minimize the discriminability between the domains.

3.6. Numerical Optimization

Eq. (7) is non-convex optimization. We use gradient-
based methods to optimize the objective function.
While in theory the methods are susceptible to lo-
cal optimum, we use heuristics to initialize: either the
PCA of the target domain data, or the low-rank fac-
torization of a discriminatively trained metric on the
source data, such as the one in large margin nearest
neighbor (LMNN) (Weinberger & Saul, 2009). In most
cases, these heuristics work well and lead to substan-
tially improved results over initialization points. De-
tails are described in the Supplementary Material.

3.7. Extensions

When the target domain has a few labeled instance,
the domain adaptation problem is referred as semi-
supervised adaptation. Our approach can be readily
extended to incorporate those labeled target domain
instances. Details, including experimental results are
described in the Supplementary Material.

4. Experimental Results

We evaluate the proposed method on two benchmark
tasks: object recognition and sentiment analysis of
product reviews. We compare the method to baselines
and other recently proposed ones for unsupervised do-
main adaptation (Gopalan et al., 2011; Blitzer et al.,
2006; Pan et al., 2011). In the Supplementary Mate-
rial, we report results on semi-supervised adaptation,
where the target domain has a few labeled instances.

4.1. Setup

We start by describing the datasets for the two tasks.
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Object recognition. We use four databases of ob-
ject images: Caltech-256 (Griffin et al., 2007), Amazon
(images from online merchants’s catalogues), Webcam
(low-resolution images by web cameras), and DSLR
(high-resolution images by digital SLR cameras). The
last three datasets were studied in (Gopalan et al.,
2011; Saenko et al., 2010). Caltech-256 is added to
increase the diversity of the domains.

We treat each dataset as a domain. There are 10 com-
mon object categories: backpack, coffee-mug, calcu-
lator, computer-keyboard, computer-monitor, computer-
mouse, head-phones, laptop-101, touring-bike, and
video-projector. There are 2533 images in total, with 8
to 151 images per category per domain.

Following the experimental protocols in previous
work (Saenko et al., 2010), we extract SURF features
(Bay et al., 2006) and encode each image with a 800-
bin histogram (the codebook is trained from a subset
of Amazon images). The histograms are first normal-
ized to have zero mean and unit standard deviation in
each dimension.

For each pair of source and target domains, we conduct
experiments in 20 random trials. In each trial, we
randomly sample labeled data in the source domain
as the training set, and unlabeled data in the target
domain as the testing set. For semi-supervised domain
adaptation, we also sample a few labeled examples in
the target domain to augment the training set, see the
Supplementary Material for details.

Sentiment analysis. We use the dataset that con-
sists of Amazon product reviews on four product types:
kitchen appliances, DVDs, books and electronics (Blitzer
et al., 2007). Each product type is used as a separate
domain. Each domain has 1,000 positive and 1,000
negative reviews. To reduce computational cost, we
select top 400 words of the largest mutual information
with the labels. We then represent each review with
a 400-dimensional vector of term counts (ie, bag-of-
words). The vectors are normalized to have zero mean
and unit standard deviation in each dimension.

For each pair of source and target domains, we con-
duct experiments in 10 random trials. In each trial,
we randomly sample 1,600 labeled data in the source
domain as the training set, and all data in the target
domain as the testing set.

Classification We learn the feature transformation
L by solving the optimization problem eq. (7). We
then transform all the data using the matrix and apply
1-nearest neighbor (1-NN) to classify instances from
the target domain. 1-NN is used to avoid tuning the
number of nearest neighbors. (In the Supplementary

Material, we also report results of using SVMs.)

Hyperparameter tuning Our method has two
hyper-parameters: the dimensionality of the new fea-
ture subspace and the regularization coefficient λ in
eq. (7). We cross-validate them using the model se-
lection procedure described in section 3.5. The range
of search for the dimensionality is {20, 40, 70, 100} and
{0, 0.25, 1, 4, 16, 64} for λ.

For baselines and other methods we have compared to,
if there are hyper-parameters to be tuned, we either
follow the procedures in those algorithms or give those
methods the benefits of doubts by reporting their best
performance by using labels from the target domain.

4.2. Results on unsupervised adaptation

We compare extensively to several methods.

• Baselines. We compare to PCA, where we
project all data into the PCA directions com-
puted on the target domain. We also compare
to LMNN (Weinberger & Saul, 2009), where we
train a large margin nearest neighbor classifier us-
ing only the source labeled data. Neither of these
methods is developed for domain adaptation and
their performances on target domains are indeed
inferior to other methods, and especially ours.

• Transfer Component Analysis (TCA) (Pan et al.,
2011). This method finds a low-dimensional lin-
ear projection such that the source and the target
domains have similar marginal distributions, reg-
ularized by preserving variances in all the data.
To measure similarities in marginals, the method
maps data to a kernel feature space. We use Gaus-
sian RBF kernels.

• Structural Correspondence Learning (SCL)
(Blitzer et al., 2006). This method augments
original features with linearly transformed fea-
tures. The linear transformation is computed as
the principal directions of parameters in binary
classifiers predicting whether pivot features are
present or not. In our experiments, we have used
all 400 features as pivot features. We then train
SVMs with the augmented feature vectors on the
source domains and apply the resulting classifiers
to the target domains.

• Geodesic Flow Subspaces (GFS) (Gopalan et al.,
2011). This method interpolates (on Grassman
manifold) between the PCA subspaces computed
on the source and the target domains respectively.
The interpolated subspaces are then used to trans-
form the original features to form super-vectors.
The dimensionality of the super-vectors is then
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Table 1. Classification accuracies on target domains with unsupervised adaptation
Domains PCA TCA GFS LMNN Metric Ours

DSLR → Webcam 80.6±0.5 66.2±0.5 75.5±0.4 81.3±0.4 55.6±0.7 83.6±0.5
DSLR → Amazon 35.1±0.3 31.4±0.2 35.7±0.5 42.3±0.3 30.3±0.8 39.6±0.4
Caltech → DSLR 36.6±1.2 33.1±0.8 36.5±0.9 37.2±1.1 35.0±1.1 44.4±1.2

Caltech → Amazon 37.7±0.5 34.9±0.4 37.9±0.5 43.2±0.4 33.7±0.8 49.2±0.6
Amazon → Webcam 33.1±0.6 26.5±0.8 32.8±0.7 35.2±0.8 36.0±1.0 38.5±1.3
Amazon → Caltech 35.9±0.3 29.3±0.3 36.1±0.5 37.6±0.4 27.3±0.7 40.0±0.4

reduced before applying 1-NN for classification.

• Metric Learning (Metric) (Saenko et al., 2010).
This method learns a metric measuring the dis-
tance between data points using the correspon-
dence information between the source and the tar-
get domains. Specifically, the correspondence is
defined as data points with the same labels. Thus,
this method uses labels from the target domains.
Despite that, our results will show our method
still outperforms Metric.

Table 1 and Table 2 summarize the classification ac-
curacies as well as standard errors of all the above
methods, as well as ours (we did not apply SCL to
object recognition as it is difficult to define what pivot
features are for those types of data). We had chosen
a subset of all pairs for saving experiment time. The
best performing algorithm(s) (statistical significant up
to one standard error) for each pair are in bold font.

In Table 1 on object recognition, our method per-
forms the best on 5 out of 6 pairs, outperforming
other competing methods with a large margin. On
the DSLR-Amazon pair, our method performs worse
than LMNN, but still significantly better than others.

Of particular interest is that LMNN outperforms
other methods specifically designed for domain adap-
tation (excluding ours). This confirms our hypothesis:
the two-stage learning schemes adopted by TCA and
GFS suffer from the fallacy that maximizing marginal
similarity does not necessarily lead to well-performing
classifiers on the target domain. In particular, we be-
lieve such methods could actually destroy discrimina-
tive information by forcing the domains to be similar.

The results thus support our argument that one-
stage learning, namely identifying jointly discrimina-
tive clustering and low-dimensional feature spaces, is
crucial for domain adaptation.

The results on sentiment analysis in Table 2 also
strongly support similar conclusions. Note that both
SCL and our methods outperform other methods sig-
nificantly. Our methods perform better on 2 out of 4
pairs, thought slightly worse than SCL on the other
two. Exploring strengths and weakness of each of these

two methods is a subject of future research.

5. Related Work

Information-theoretical approach has been applied to
semi-supervised learning (Grandvalet & Bengio, 2005)
where the core idea is to reduce the confusability
(among possible labels) on unlabeled data by classi-
fiers trained on the labeled data. However, they have
assumed that the data are drawn from the same distri-
bution so there is no need to learn a domain-invariant
feature space.

Rastrow et al. described an information-theoretical
based criterion for model selection in domain adap-
tation (Rastrow et al., 2010). Model selection is a
challenging problem when cross-validation is not pos-
sible due to the lack of labeled data on the target
domain. However, their approach is two-stage: they
refine model parameters on unlabeled data by mini-
mizing the conditional entropy of the labeling func-
tion from the initial model tuned on the labeled source
data. Consequently, their formulation does not learn
an invariant feature space.

Our work is also related to the recent study of regular-
ized information maximization for discriminative clus-
tering (Gomes et al., 2010). The authors there used
a parametric model to compute the posterior proba-
bilities of assigning a data point to various clusters.
The objective is to find clustering assignments of all
data points such that the mutual information between
the data and the cluster ids are maximized. While
their work is generalized to semi-supervised cluster-
ing, they do not consider domain adaptation, which
has fundamentally different goals and constraints from
semi-supervised learning, as pointed out previously. In
particular, the above-mentioned work does not learn a
new feature space.

6. Conclusion

We propose an one-stage approach that jointly
learns a domain-invariant feature space and optimizes
information-theoretic metrics directly related to dis-
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Table 2. Classification accuracies on target domains with unsupervised adaptation
Domains PCA SCL TCA GFS LMNN Ours

Kitchen → DVD 66.1±0.7 73.2±0.6 64.9±0.5 67.9±1.0 70.8±0.5 75.4±0.6
DVD → Books 66.4±0.4 79.2±0.4 64±0.7 70.8±0.6 71.7±0.6 78.4±0.5

Books → Electronics 63.6±0.9 75.6±0.6 62.7±0.7 67.2±1.0 69.2±0.6 79.2±0.9
Electronics → Kitchen 71.8±0.4 84.5±0.5 69.5±0.7 75.8±1.2 77.3±0.6 82.9±0.5

criminative classification on the target domain. Our
empirical results support the validity of our modeling
assumptions that data in both source and target do-
mains are discriminatively clustered. We show that ex-
isting approaches where learning feature is decoupled
from learning discriminative classifiers, can be signif-
icantly improved by taking the clustering structures
into consideration. For future work, we plan to study
discriminatively learning of nonlinear feature transfor-
mation for domain adaptation.
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