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Abstract

Recently, there has been much interest in
finding globally optimal Bayesian network
structures. These techniques were devel-
oped for generative scores and can not be di-
rectly extended to discriminative scores, as
desired for classification. In this paper, we
propose an exact method for finding net-
work structures maximizing the probabilis-
tic soft margin, a successfully applied dis-
criminative score. Our method is based on
branch-and-bound techniques within a lin-
ear programming framework and maintains
an any-time solution, together with worst-
case sub-optimality bounds. We apply a set
of order constraints for enforcing the net-
work structure to be acyclic, which allows a
compact problem representation and the use
of general-purpose optimization techniques.
In classification experiments, our methods
clearly outperform generatively trained net-
work structures and compete with support
vector machines.

1. Introduction

Bayesian networks (BNs) are an important type of
probabilistic graphical models (Pearl, 1988; Koller &
Friedmann, 2009) and specify a probability distribu-
tion over a set of random variables (RVs). They make
use of a directed acyclic graph (DAG), with nodes cor-
responding to the RVs, representing the factorization
of the joint distribution. Learning the structure of
Bayesian networks from data can be cast as optimiza-
tion problem, where the goal is to find a DAG max-
imizing some score function. This is a combinatorial
problem and known to be NP-hard in general (Chick-
ering, 1996). Therefore, most approaches to learn the
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BN structure are approximative or greedy heuristics.
Recently, there has been much interest in exact struc-
ture learning, i.e. in finding globally optimal DAGs.
Koivisto et al. (2004) use a dynamic programming ap-
proach for efficiently summing over all variable orders,
leading to exponential (rather than super-exponential)
run-time. Further development of this approach can
be found in (Silander & Myllymäki, 2006; Parviainen
& Koivisto, 2009). Due to exponential run-time, these
methods are currently restricted to approximately 30-
50 variables. Alternatively to dynamic programming,
branch-and-bound (B&B) techniques have been ex-
ploited for exact structure learning (de Campos et al.,
2009; de Campos & Ji, 2011; Jaakkola et al., 2010).
In comparison to dynamic programming, these tech-
niques offer the advantage of an any-time solution,
i.e. as soon as some feasible solution has been found,
the algorithm can be interrupted and returns the cur-
rently best solution, together with a worst-case sub-
optimality bound. However, if the algorithm is kept
running, it eventually finds a globally optimal solu-
tion.

These methods have been developed for generative
structure learning, i.e. they aim to maximize genera-
tive scores such as MDL/BIC (Rissanen, 1978; Suzuki,
1993) or BDe (Buntine, 1991; Cooper & Herskovits,
1992; Heckerman et al., 1995). These scores are de-
composable, i.e. they can be written as a sum over
local scores, one for each random variable. On the
other hand, when the learned BN shall be used as
classifier, we aim to maximize a discriminative score,
such as (parameter penalized) conditional likelihood,
classification rate, or a recently proposed probabilistic
margin formulation (Guo et al., 2005; Pernkopf et al.,
2012). Using a discriminative criterion typically leads
to classifiers with higher accuracy, especially, when the
selected model class does not capture the underlying
data distribution. However, since these discriminative
BN scores are not decomposable, the discussed meth-
ods for exact generative structure learning cannot be
directly applied.
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In this paper, we propose an exact method for learn-
ing a BN structure maximizing the probabilistic mar-
gin. For this purpose, we use concepts developed in
(de Campos et al., 2009; Jaakkola et al., 2010; Cussens,
2011), leading to a formulation as mixed integer lin-
ear program (MILP). For solving a MILP, the prob-
lem is relaxed in a linear program (LP), and a B&B
method is used to enforce integrality. Therefore, our
work falls within the line of research using B&B for
exact structure learning, but maximizing a discrimi-
native criterion. Similar as in (Cussens, 2010), we use
a set of order constraints to enforce acyclicity in the di-
rected graph, rather than the cluster constraints used
in (Jaakkola et al., 2010). The advantage of this for-
mulation is, that for N RVs, we only require N2 −N
linear constraints for enforcing acyclicity, rather than
super-exponentially many cluster constraints. Conse-
quently, we are able to compactly represent our prob-
lem and to use powerful general-purpose solvers for
structure learning. Although we learn a discrimina-
tive BN structure in order to obtain good classifiers, we
still use maximum likelihood parameters. Therefore,
the resulting BN consistently approximates the true
underlying distribution and is suitable for all kinds of
inference scenarios.

Similarly as in (Guo et al., 2005), the margin formu-
lation needs one linear constraint per training sam-
ple and per competing class. This can render the
approach infeasible for problems with many training
samples and many class values. Therefore, as a second
contribution, we propose a binary margin formulation,
which can be interpreted as a local (sample-wise) one-
versus-all classification scheme. The problem size us-
ing the binary margin does not depend on the num-
ber of classes, which is computationally beneficial for
problems with many classes. For binary classification
problems, the two margin formulations are equivalent.
For multi-class problems, we empirically shown that
the binary margin classifier competes with the origi-
nal max-margin structure. We perform classification
experiments on 31 datasets, and compare our algo-
rithms with naive Bayes, tree-augmented naive Bayes,
generative learned BNs and support vector machines
(SVMs). The max-margin structures outperform the
other BN classifiers on most datasets, and compete
with support vector machines.

The paper is organized as follows. In section 2, we re-
view BNs and introduce our notation, and in section
3, we review related work. We present our method for
max-margin structure learning in section 4. The bi-
nary margin formulation is introduced in 5. In section
6 we present our experiments and section 7 concludes
the paper.

2. Background and Notation

Throughout the paper we assume discrete RVs, where
plain capital letters denote single RVs and capital
boldface letters represent sets of RVs. The set of states
which can be assumed by RV X is denoted as val(X),
and we define sp(X) = |val(X)|. For simplicity of no-
tation, we identify the states of an RV X with natural
numbers, i.e. val(X) = {1, . . . , sp(X)}. However, we
do not assume a particular ordering or interpretation
of these states. Furthermore, we use val(X) to denote
the set of possible joint states of a set of RVs X, and
let sp(X) = |val(X)|. Lower-case plain letters repre-
sent values or states of RVs, e.g. x is a value of RV
X. Similarly, lower-case boldface letter represent joint
states of variable sets, e.g. x is a state of RV set X.
When y is a state of Y, and X is a subset of Y, then
y(X) denotes the corresponding state of X.

A BN B over a set of N RVs X = {X1, . . . , XN}
is defined as a tuple 〈G,Θ〉, where G is a DAG,
with nodes corresponding to the RVs in X. The
set of parents of Xi according to G is denoted as
Pai. The set Θ = {θ1, . . . , θN} contains parameter
sets θi = {θij|h,∀j ∈ val(Xi),∀h ∈ val(Pai)} for each
variable Xi, parameterizing a conditional probability
distribution: P (Xi = j|Pai = h; θi) = θij|h. A BN de-
fines a probability distribution over the RVs, according
to

PB(X = x) =

N∏
i=1

sp(Xi)∏
j=1

∏
h∈val(Pai)

θij|h
νi
j|h , (1)

where νij|h is the indicator function

1(xi = j and x(Pai) = h). For classification, one
of the variables in X represents the class variable
C, where without loss of generality, we assume
that X1 = C and let Z = {X2, . . . , XN}. Let
D = {x1, . . .xM} be a collection of M i.i.d. samples
drawn from some unknown distribution. It is well
known that for a fixed BN structure G, the maximum
likelihood (ML) parameters Θ̂ are given as

θ̂ij|h =
nij|h

nih
, (2)

where nij|h =
∑M
m=1 ν

i,m
j|h , nih =

∑sp(Xi)
j=1 nij|h, and

νi,mj|h = 1(xmi = j and xm(Pai)
= h). We can regularize

these parameters using Laplace-smoothing, by replac-
ing nij|h with nij|h + 1. The smoothed parameters
are also consistent ML estimators, although biased to-
wards a uniform distribution.
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3. Related Work

We adopt the framework developed in (Jaakkola et al.,
2010), where the aim was to maximize a generative
score such as MDL/BIC or BDe. For each vari-
able Xi, we identify a set of possible parent-sets
Si = {Si,1, . . .Si,Qi

}, where Qi = |Si| and each
Si,j ⊆ X \ Xi, j ∈ {1, . . . , Qi}. A specific net-
work structure G is represented by selecting a single
parent-set from each Si, i ∈ {1, . . . , N}. The sets
Si have to be reasonable large to represent a vari-
ety of solutions, while being reasonable small, such
that the algorithm remains tractable. In (de Cam-
pos et al., 2009), a pruning strategy was presented,
for a-priori excluding all parent-sets, which can not
occur in an optimal DAG. Since not every combina-
tion of parent-sets yields an acyclic graph, additional
acyclicity constraints have to be imposed. More for-
mally, let ωi = (ωi,1, . . . , ωi,Qi

)T be a vector of pre-
computed local scores, where ωi,j is the local score
for Si,j . Furthermore, let ηi = (ηi,1, . . . , ηi,Qi

)T be the
parent-set indicator vector, which contains exactly one
1, indicating the selected parent-set in Si, and which
is 0 elsewhere. All ηi are stacked into a single vector
η = (ηT1 , . . . ,η

T
N )T , and similarly ω = (ωT1 , . . . ,ω

T
N )T .

Let P be the convex hull of all vectors η which rep-
resent valid DAGs. Consequently, all vertices of P
represent DAGs, and as easily shown, all vectors η
representing cyclic graphs are not elements of P. Gen-
erative structure learning is cast as the LP

maximize ωTη
s.t. η ∈ P. (3)

Since there is always an optimal solution in some ver-
tex of P, and since each vertex represents a DAG, we
are in principle able to recover an optimal structure by
solving (3). Note that P has super-exponentially many
facets in the number of variables, which, in agreement
with theory (Chickering, 1996), makes the problem
hard. Unfortunately, no representation of P via linear
inequalities is known. Therefore, in (Jaakkola et al.,
2010; Cussens, 2011) the constraint in problem (3) was
replaced with

ηi,j ≥ 0 i ∈ {1, . . . , N}, j ∈ {1, . . . , Qi} (4)

Qi∑
j=1

ηi,j = 1 i ∈ {1, . . . , N} (5)

ηi,j ∈ Z i ∈ {1, . . . , N}, j ∈ {1, . . . , Qi} (6)∑
i:Xi∈C

Qi∑
j=1

ηi,j1(Si,j ∩C = ∅) ≥ 1 ∀C ⊆ X (7)

The constraints (4), (5) and (7) were used as approx-
imation for P. However, since the solution of the LP

might be fractional, the integrality constraint (6) is re-
quired. The constraints (4)-(6) can be interpreted as
the constraint “η represents a directed graph”, since
they enforce that exactly one entry in each ηi is 1,
and all others are 0. Constraints (7) enforce acyclicity,
since they enforce that for each cluster C ⊆ X, there is
at least one variable Xi ∈ C whose parent-set is either
outside C, or which is empty. Thus, constraints (4)-
(7) force η to represent a DAG. Note that the problem
has super-exponentially many constraints. Jaakkola
et al. (2010) solve the relaxed problem in the dual,
where each in-active cluster constraint corresponds to
a zero dual variable, and Cussens (2011) uses a cut-
ting plane approach, iteratively adding violated cluster
constraints.

As already noted, it is the decomposability of gener-
ative scores which yields the linear objective ωTη in
(3), leading to the LP formulation. Since discrimi-
native scores are usually not decomposable, the LP
approach cannot be directly applied. However, in the
next section we derive an exact MILP formulation for
the so-called probabilistic soft margin. The margin δm

of the mth sample is defined as (Guo et al., 2005):

δm =
PB(cm|zm)

max
c 6=cm

PB(c|zm)
=

PB(cm, zm)

max
c6=cm

PB(c, zm)
. (8)

When δm > 1, then the mth sample is correctly clas-
sified, and when δm < 1, it is wrongly classified. Mo-
tivated by SVMs, Pernkopf et al. (2012) defined a soft
margin (SM) using the hinge loss:

SM(B) =

M∑
m=1

min(log δm, γ). (9)

The log-margin of each sample contributes linearly to
the overall score. To avoid that the score is mainly de-
termined by a few samples with overly large margin,
the sample margins are limited with the hinge func-
tion min(·, γ). The parameter γ, which is obtained
by cross validation, has the interpretation as “desired
log-margin” for each sample. In (Pernkopf et al., 2012)
this score was used for parameter learning using a con-
jugate gradient method, and in (Pernkopf et al., 2011;
Pernkopf & Wohlmayr, 2012) the same score was used
for inexact BN structure learning, based on greedy hill-
climbing and simulated annealing.

4. Max-Margin Structure Learning

We aim to find a BN structure G globally maximiz-
ing the SM score in (9). First, we restrict the max-
imal number of parents for each variable, to obtain
a tractable number of parent-sets. For a variable
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Xi 6= C, we only need to consider the empty par-
ent set, and parent-sets containing C, since all other
parent-sets do not influence the margin.1 We further
assume Laplace-smoothed ML parameters while learn-
ing the structure. Firstly because simultaneous learn-
ing of max-margin structure and parameters would
render our approach intractable. Secondly, by using
generative parameters, the resulting BN can still be
interpreted as generative model, although its structure
is determined discriminatively.

Using the notation introduced in section 3, we can
expand the BN distribution (1) according to

PB(x) =

N∏
i=1

sp(Xi)∏
j=1

Qi∏
k=1

∏
h∈val(Si,k)

θi,kj|h
νi,m,k
j|h ηi,k

, (10)

where θi,kj|h are the ML parameters when

Si,k is the parent-set of variable Xi, and

νi,m,kj|h = 1(xmi = j and xm(Si,k) = h). Clearly, (10)

represents the same distribution as (1), where the
structure G is explicitly encoded with η. Inserting
(10) in the margin definition (8) and taking the log,
gives

log δm =

N∑
i=1

sp(Xi)∑
j=1

Qi∑
k=1

∑
h

νi,m,kj|h ηi,k log θi,kj|h−

max
c6=cm

 N∑
i=1

sp(Xi)∑
j=1

Qi∑
k=1

∑
h

νi,m,k,cj|h ηi,k log θi,kj|h


= min
c6=cm

[
N∑
i=1

Qi∑
k=1

ηi,k α(i, k,m, c)

]
, (11)

where νi,m,k,cj|h is defined as νi,m,kj|h , but where the class

value in xm is replaced with the value c. The coeffi-
cient α(i, k,m, c) is given as

α(i, k,m, c) =

sp(Xi)∑
j=1

∑
h

νi,m,kj|h log θi,kj|h−ν
i,m,k,c
j|h log θi,kj|h.

(12)
By defining a vector αm,c containing the coefficients
α(i, k,m, c) corresponding with the entries of η, the
log-margin in (11) can be written as a minimum over
inner products:

log δm = min
c6=cm

αTm,cη. (13)

Using a standard technique from linear programming,
we can express the SM score in (9) as follows. We

1More precisely, for any Xi 6= C, it is equivalent to
select the empty parent-set, or to select a parent-set not
containing the class variable.

introduce a variable τm for each sample, together with
the constraints

τm ≤ αTm,cη, ∀m,∀c 6= cm, (14)

τm ≤ γ, (15)

and maximize
∑M
m=1 τ

m. In an optimal LP solu-

tion we have τm = min(log δm, γ), and
∑M
m=1 τ

m is
precisely the SM score. As in generative structure
learning, the DAG constraint could in principle be ad-
dressed by constraints (4)-(7). However, in this paper
we use a more convenient way to express acyclicity,
allowing a compact MILP representation of our prob-
lem. Therefore, we replace the cluster constraints (7)
with alternative order constraints, enforcing a topolog-
ical ordering among the nodes and thus acyclicity of
the resulting graph. We introduce a real-valued order
variable oi for each variable Xi, which is constrained
to 0 ≤ oi ≤ ∆, where ∆ is some arbitrary positive
number. The order constraints are:

(1− ai,j) 2∆ + oj − oi ≥
∆

N
(16)

∀i, j ∈ {1, . . . , N}, i 6= j,

where ai,j =
∑Qi

k=1 ηj,k 1(Xi ∈ Sj,k). The follow-
ing proposition shows that these constraints enforce
acyclicity.

Proposition 1. A vector η represents a DAG if and
only if there exist some oi, i ∈ {1, . . . , N}, with
0 ≤ oi ≤ ∆, for some arbitrary ∆ > 0, such that con-
straints (16) and (4)-(6) are fulfilled.

Proof. First we show that when the conditions in the
proposition hold, then η is necessarily a DAG. Con-
straints (4)-(6) enforce that η represents some directed
graph G, since in this case each ηi contains exactly one
1 and is 0 elsewhere. It follows that also ai,j is either
1 or 0, and equals an entry of the adjacency matrix of
G, indicating an edge from Xi to Xj . We switch cases:
When ai,j = 0, i.e. when there is no edge Xi → Xj ,
then (16) yields

2∆ + oj − oi ≥ 2∆ + 0−∆ = ∆ ≥ ∆

N
, (17)

and the constraint is fulfilled regardless of oi, oj . When
ai,j = 1, i.e. when there is an edge Xi → Xj , then we
have

oj − oi ≥
∆

N
, (18)

which implies that oj is strictly larger than oi. By
sorting all oi, we obtain an ordering among the vari-
ables (among several oi with the same value, we pick
an arbitrary ordering). Since there can not be an edge



Exact Maximum Margin Structure Learning of Bayesian Networks

Xi → Xj when Xi comes after Xj , this ordering is a
topological ordering, and thus the resulting directed
graph is acyclic.

It remains to show that when η represents a DAG,
then the conditions in proposition 1 hold. When η rep-
resents a DAG, then it fulfills constraints (4)-(6), since
it is a directed graph. Furthermore, we can obtain
some topological ordering from the DAG. Let ōi be the
index of Xi in this ordering. Setting oi = (ōi − 1) ∆

N
fulfills constraints (16) and 0 ≤ oi ≤ ∆.

In contrast to the super-exponentially many cluster
constraints in (7), we only need N2 − N linear order
constraints and N additional real-valued order vari-
ables to enforce acyclicity. Thus, the resulting prob-
lem has a more compact representation and can be
solved by general-purpose MILP solvers. Similar con-
straints, using the same mechanism as depicted here,
have been proposed for maximum-likelihood pedigree
learning (Cussens, 2010). To summarize, our MILP
formulation for finding a DAG maximizing the SM in
(9), is given as:

max.
∑M
m=1 τ

m

s.t. τm ≤ αTm,cη, ∀m,∀c 6= cm

τm ≤ γ ∀m
ηi,j ≥ 0 ∀i, j∑Qi

j=1 ηi,j = 1 ∀i
ηi,j ∈ Z ∀i, j
(1− ai,j) 2∆ + oj − oi ≥ ∆

N ∀i, j, i 6= j
(19)

Note that this formulation can immediately be applied
to decomposable (i.e. practically all generative) scores.
We simply remove the first two constraints (the margin
constraints), and replace the objective with the objec-
tive of problem (3). Before we present experimental
results in section 6, we introduce an alternative mar-
gin formulation, leading to a simpler problem.

5. Binary Margin Formulation

The main limitation of problem (19) is that we have
a constraint τm ≤ αTm,cη for each sample and each
competing class, i.e. in total M(sp(C)− 1) linear con-
straints for specifying the margin.2 One approach
would be to reduce the number of samples M , by using
a representative sub-set of D. Similar techniques have
been proposed for clustering and mixture model train-
ing, and we plan to address this point in future work.
Here, we propose a formulation which only needs M
constraints rather than M(sp(C)−1), which alleviates

2The constraint τm ≤ γ is a simple variable bound and
can be treated rather easily.

especially problems with many class values. The basic
idea is to employ a one-versus-all classification scheme.
When we desire to train a max-margin BN for classi-
fying class c versus all other classes, we replace the
parameters used in (10)-(12) with

θi,kj|h(c) =
ni,kj|h(c)

ni,kh (c)
, (20)

where

ni,kj|h(c) =

M∑
m=1

νi,m,kj|h (c), ni,kh (c) =

sp(Xi)∑
j=1

ni,kj|h(c)

νi,m,kj|h (c) =

{
νi,m,k,1j|h if cm = c

νi,m,k,2j|h otherwise.

In words, θi,kj|h(c) are those ML parameters when we

re-interpret class value c as class 1 and all other class
values as class 2. We could now train a one-versus-
all classifier for each c ∈ {1, . . . , sp(C)} and combine
their decisions for the multi-class problem. However, it
is generally unclear how to correctly combine the deci-
sions of one-versus-all classifiers. Furthermore, we now
would have to train sp(C) different classifiers instead
of a single one, although each problem would have only
M instead of (sp(C) − 1)M margin constraints. In-
stead, we use the following local, i.e. sample-wise, one-
versus-all scheme. Let Θ(c) be the collection of the pa-
rameters according to (20), for all c ∈ {1, . . . , sp(C)}.
Let PB,Θ(c)(X) be the BN distribution with parame-
ters Θ(c) and PB,Θ(X) the BN distribution with origi-
nal parameters Θ. We define the binary margin δ̄m of
the mth sample as

δ̄m =
PB,Θ(cm)(1, z

m)

PB,Θ(cm)(2, zm)
. (21)

Clearly, PB,Θ(cm, zm) = PB,Θ(cm)(1, z
m), since we

used exactly the same statistics for class c in
the original parameterization Θ, and for class 1
in the alternative parameterization Θ(cm). When
sp(C) = 2, then Θ(1) and Θ(2) are sim-
ply redundant versions of Θ. In this case we
have PB,Θ(C 6= cm, zm) = PB,Θ(cm)(2, z

m), and
δ̄m = δm, i.e. the margin and the binary margin are
equivalent for binary classification problems. For
sp(C) > 2, PB,Θ(cm)(2, z

m) is an approximation for
PB,Θ(C 6= cm, zm) =

∑
c′ 6=cm PB,Θ(c′, zm), assuming

that PB,Θ(cm)(z
m) ≈ PB,Θ(zm).

Note that the additional parameters can be stored effi-
ciently, since the parameters for class 1 (for each Θ(c))
are already stored in the original parameter set Θ.
Therefore, we need only twice as much memory for
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storing Θ and Θ(c), c ∈ {1, . . . , sp(C)}, than for stor-
ing Θ alone. Following a similar derivation as for (13),
we obtain

log δ̄m = ᾱTmη, (22)

where ᾱm contains the coefficients (cf. (12))

ā(i, k,m) =

sp(Xi)∑
j=1

∑
h

νi,m,k,1j|h log θi,kj|h(cm)−

νi,m,k,2j|h log θi,kj|h(cm). (23)

Similar as in (9), we define a soft binary margin

SBM(B) =
∑M
m=1 min(log δ̄m, γ). The MILP for find-

ing a DAG maximizing the SBM is defined as in (19),
except that the constraints

τm ≤ αTm,cη, ∀m, ∀c 6= cm (24)

are replaced with

τm ≤ ᾱTmη, ∀m. (25)

The alternative parameters Θ(c) are only needed to
obtain the coefficients ā(i, k,m). For the final BN clas-
sifier, we use the original parameters Θ.

6. Experiments

We performed classification experiments on 31 dataset
obtained from the UCI machine learning repository
(Frank & Asuncion, 2010). We used the 25 datasets
already used in (Friedman et al., 1997), plus six ad-
ditional datasets: “abalone”, “adult”, “car”, “mush-
room”, “nursery”, and “spambase”. These datasets
have between 4 and 57 input features and contain
between 80 and 45222 samples. For a more de-
tailed information we refer the reader to (Frank
& Asuncion, 2010). To estimate the accuracy of
the classifiers, a test set was used for the datasets
“chess”, “letter”, “mofn-3-7-10”, “satimage”, “seg-
ment”, “shuttle-small”, “waveform-21”, and the six
additional datasets. For the remaining datasets, 5-
fold cross-validation was used to estimate the ac-
curacy. Samples with missing features were re-
moved beforehand, and continuous features were dis-
cretized using the method described in (Fayyad &
Irani, 1993). We compared our methods with naive
Bayes (NB), the tree-augmented naive Bayes (TAN)
(Friedman et al., 1997) and with a BN with gener-
atively trained structure, using MDL as score func-
tion (Suzuki, 1993). Furthermore, we compared with
SVMs using a Gaussian kernel, using the LIB-SVM
implementation (Chang & Lin, 2011). For the SVM
parameters σ (width of Gaussian kernel) and C (trade-
off factor), we validated all combinations of σ ∈

{2−5, 2−4, . . . , 25} and C ∈ {2−3, 2−2, . . . , 25}. For
our methods, BN structure learning using the SM
and SBM, we validated the parameter γ (desired

log margin), where we used γ = log
(

p
1−p

)
, with

p ∈ {0.501, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999}. Addi-
tionally, we validated the maximal number of parents,
where we used 1 or 2 parents per node. When the
training set was sufficiently large (> 1000 samples)
we used 20% of the training samples as validation set.
Otherwise, we used 5-fold cross validation. In all cases,
we used the same validation set/cross-folds for SVM
training and for our algorithms.

For solving MILPs we used the ILOG CPLEX opti-
mizer.3 For each optimization problem we set a time
limit of 2 hours, i.e. if after 2 hours an optimization
had not finished, we stopped it and used the best solu-
tion found so far. When maximizing the SM, for most
datasets an optimal solution was found within these
two hours, except for “letter”, “satimage”, “segment”,
“soybean-large”, “vehicle”, “adult”, and “spambase”.
For the datasets “letter” and “soybean-large” the re-
sulting MILPs were too large to return a reasonable so-
lution at all: only the trivial unconnected DAG, found
by an internal CPLEX heuristic was returned. How-
ever, when maximizing the SBM, a reasonable solution
was found in any case. Table 1 shows the worst-case
sub-optimality bounds for the “problematic” datasets,
according to 100 z̄−z

z̄ %, where z̄ is the B&B upper
bound of the margin score, and z is the objective of the
best feasible solution. For the generative BNs using
the MDL score, we used our formulation (19) without
margin constraints and used the linear MDL objec-
tive (cf. (3)). We used the same set of parent-sets
as for max-margin training, and also cross-validated
the number of parents per node (1 or 2 parents). For
all datasets an optimal solution was found, where the
optimization time was typically under 1 second. The
longest optimization time of 716 seconds was needed
for “spambase” (58 variables).

The classification results for all datasets are shown in
table 2, where the estimated accuracy, together with
the 95% confidence intervals is shown (Mitchell, 1997).
Table 3 summarizes these results, where the plain and
boldface numbers are the number of times a classi-
fier outperforms an other classifier with a significance
level of 68% and 95%, respectively. For the signifi-
cance tests, we used a one-sided paired t-test for the
datasets with cross-validation, and a one-sided bino-
mial test for the other datasets. We see that the max-
margin structures SM and SBM perform clearly better

3ILOG CPLEX is freely available for non-commercial
research under http://www.ibm.com/

http://www.ibm.com/
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Table 1. Relative worst-case sub-optimality bounds for SM and SBM in %.

Method letter satimage segment soybean-large vehicle adult spambase
SM ∞ 7.60 16.58 ∞ 4.57 2.42 1.07
SBM 1.99 15.04 0.00 0.00 0.00 0.58 1.07

Table 2. Mean classification accuracy with 95% confidence intervals for 31 datasets. NB: Naive Bayes, TAN: tree-
augmented naive Bayes, MDL: generative Bayesian network trained with MDL criterion, SM: soft margin (this pa-
per), SBM: binary soft margin (this paper), SVM: support vector machine with Gaussian kernel. Datasets “letter” and
“soybean-large” had too many samples/class values for SM to return a result.

Dataset NB TAN 1 MDL SM SBM SVM
australian 86.50 ± 2.76 86.08 ± 2.43 85.34 ± 2.93 85.77 ± 3.02 85.77 ± 3.02 86.80 ± 2.85
breast 97.39 ± 1.64 97.10 ± 1.98 96.95 ± 1.51 97.24 ± 1.97 97.24 ± 1.97 97.69 ± 1.95
chess 87.34 ± 2.00 93.71 ± 1.46 91.74 ± 1.65 95.50 ± 1.24 95.50 ± 1.24 98.50 ± 0.73
cleve 83.78 ± 6.60 80.74 ± 6.77 82.43 ± 6.26 84.13 ± 6.01 84.13 ± 6.01 82.76 ± 6.24
corral 87.37 ± 9.73 90.57 ± 9.09 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
crx 85.45 ± 6.46 86.38 ± 3.60 86.08 ± 3.92 84.68 ± 3.34 84.68 ± 3.34 86.37 ± 1.65
diabetes 75.12 ± 4.28 74.08 ± 4.11 75.38 ± 3.58 75.52 ± 3.62 75.52 ± 3.62 73.84 ± 4.28
flare 80.20 ± 6.68 82.92 ± 4.78 82.64 ± 2.60 81.60 ± 3.29 81.60 ± 3.29 82.45 ± 1.27
german 75.00 ± 3.90 73.70 ± 3.30 72.60 ± 2.34 73.60 ± 3.60 73.60 ± 3.60 73.40 ± 3.81
glass 70.83 ± 8.53 69.94 ± 7.88 70.33 ± 9.27 70.70 ± 8.49 72.69 ± 9.92 71.33 ± 3.91
glass2 81.62 ± 5.17 80.27 ± 6.87 81.62 ± 5.17 82.77 ± 5.44 82.77 ± 5.44 80.27 ± 8.36
heart 84.07 ± 6.82 82.22 ± 5.29 83.33 ± 7.63 83.33 ± 6.90 83.33 ± 6.90 83.70 ± 6.97
hepatitis 86.33 ± 8.33 89.00 ± 9.66 85.33 ± 6.93 89.33 ± 7.40 89.33 ± 7.40 89.67 ± 11.74
iris 94.00 ± 1.85 95.33 ± 2.27 94.00 ± 1.85 93.33 ± 2.93 93.33 ± 2.93 93.33 ± 2.93
letter 73.50 ± 1.22 85.60 ± 0.97 74.86 ± 1.20 N/A 86.64 ± 0.94 97.78 ± 0.41
lymphography 87.09 ± 11.49 87.09 ± 10.89 81.90 ± 10.62 83.59 ± 13.17 85.39 ± 11.36 83.10 ± 2.09
mofn-3-7-10 86.72 ± 2.08 90.82 ± 1.77 88.28 ± 1.97 92.19 ± 1.64 92.19 ± 1.64 100.00 ± 0.00
pima 75.78 ± 1.15 75.39 ± 2.58 76.04 ± 0.76 75.40 ± 1.84 75.40 ± 1.84 75.66 ± 1.92
satimage 81.40 ± 1.71 87.45 ± 1.45 85.00 ± 1.56 88.50 ± 1.40 87.45 ± 1.45 91.35 ± 1.23
segment 90.65 ± 2.06 92.73 ± 1.83 90.65 ± 2.06 95.97 ± 1.39 95.32 ± 1.49 97.53 ± 1.10
shuttle-small 98.81 ± 0.48 99.48 ± 0.32 99.53 ± 0.30 99.79 ± 0.20 99.64 ± 0.27 99.43 ± 0.34
soybean-large 91.62 ± 1.20 92.03 ± 2.11 88.12 ± 2.84 N/A 93.98 ± 1.74 93.76 ± 2.14
vehicle 59.13 ± 2.99 69.14 ± 2.92 69.88 ± 3.43 69.26 ± 0.46 69.03 ± 1.85 68.74 ± 4.20
vote 90.17 ± 4.41 94.07 ± 3.00 93.85 ± 3.71 95.65 ± 3.08 95.65 ± 3.08 94.48 ± 3.29
waveform-21 78.85 ± 1.17 79.21 ± 1.16 78.85 ± 1.17 79.43 ± 1.16 79.43 ± 1.16 79.85 ± 1.15
abalone 56.53 ± 3.02 62.34 ± 2.95 62.15 ± 2.96 64.18 ± 2.92 63.31 ± 2.94 62.54 ± 2.95
adult 83.75 ± 0.59 85.11 ± 0.57 85.29 ± 0.57 86.39 ± 0.55 86.39 ± 0.55 84.84 ± 0.57
car 82.96 ± 3.07 86.43 ± 2.80 83.48 ± 3.04 92.52 ± 2.15 91.65 ± 2.26 97.57 ± 1.26
mushroom 95.16 ± 0.81 99.96 ± 0.07 99.85 ± 0.14 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
nursery 90.05 ± 0.73 92.67 ± 0.63 89.72 ± 0.74 94.58 ± 0.55 94.71 ± 0.55 99.77 ± 0.12
spambase 89.65 ± 1.24 92.65 ± 1.07 92.70 ± 1.06 94.48 ± 0.93 94.48 ± 0.93 93.96 ± 0.97

than NB, TAN and MDL, since a max-margin struc-
ture outperforms the other BNs at least 17 times (11
times significantly), while NB, TAN and MDL out-
perform a max-margin structure maximal 7 times (2
times significantly). On the other hand, the SVM out-
performs the max-margin structures at least 11 times
(6 times significantly), while a max-margin structure
outperforms the SVM maximal 9 times (3 times sig-
nificantly). Therefore, there is a trend in favor of the
SVM, although the results for the max-margin struc-
tures are in the same range. As already mentioned,
the BNs with max-margin structure still use genera-
tive parameters. Therefore, the resulting models still
consistently approximate the empirical data distribu-
tion and are amenable for other inference tasks than
classification. Additionally, we could train the param-
eters of the resulting BNs in a discriminative way, to
further improve classification results (Guo et al., 2005;
Pernkopf et al., 2012). We plan to address this in fu-
ture work.

Table 3. Number of times where classifier in row outper-
formed classifier in column. Plain letters: significance level
68%. Boldface letters: significance level 95%.

\ NB TAN MDL SM SBM SVM
NB — 7/2 9/3 7/2 7/1 7/0

TAN 20/16 — 16/10 4/0 4/0 4/0
MDL 15/12 8/3 — 5/1 5/1 7/1
SM 18/14 17/13 19/11 — 4/2 8/3

SBM 21/16 18/14 21/12 3/0 — 9/2
SVM 20/17 15/10 16/10 11/6 12/7 —

7. Conclusion

We proposed an exact method for the combinato-
rial problem of finding a BN structure maximiz-
ing the probabilistic soft margin, extending previous
methods for exact generative BN structure learning.
We demonstrated the applicability of our methods
on small and medium sized datasets and produced
promising results. Having an exact algorithm is valu-
able – although the problem is NP-hard. Firstly, it is
important to address those datasets were the problem



Exact Maximum Margin Structure Learning of Bayesian Networks

turns out to be tractable. Secondly, a key feature of
the methods presented in this paper is that they pro-
vide any-time solutions, i.e. when the problem turns
out to be infeasible, they still return an approximation
together with a worst-case estimate of sub-optimality.
Therefore, these methods can also provide satisfying
results on more difficult problems. Furthermore, exact
methods provide interesting theoretical insights into
the problem nature, and possibly motivate new heuris-
tics and approximations for inexact structure learning.
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mum margin structure learning of Bayesian network
classifiers. In ICASSP, pp. 2076–2079, 2011.

Pernkopf, F., Wohlmayr, M., and Tschiatschek,
S. Maximum margin Bayesian network classifiers.
IEEE TPAMI, 34:521–532, 2012.

Rissanen, J. Modeling by shortest data description.
Automatica, 14:465–471, 1978.

Silander, T. and Myllymäki, P. A simple approach
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