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Abstract

Canonical Correlation Analysis (CCA) is a
classical tool for finding correlations among
the components of two random vectors. In
recent years, CCA has been widely applied
to the analysis of genomic data, where it
is common for researchers to perform mul-
tiple assays on a single set of patient sam-
ples. Recent work has proposed sparse vari-
ants of CCA to address the high dimension-
ality of such data. However, classical and
sparse CCA are based on linear models, and
are thus limited in their ability to find gen-
eral correlations. In this paper, we present
two approaches to high-dimensional nonpara-
metric CCA, building on recent developments
in high-dimensional nonparametric regres-
sion. We present estimation procedures for
both approaches, and analyze their theoret-
ical properties in the high-dimensional set-
ting. We demonstrate the effectiveness of
these procedures in discovering nonlinear cor-
relations via extensive simulations, as well as
through experiments with genomic data.

1. Introduction

Canonical correlation analysis (Hotelling, 1936), is a
classical method for finding correlations between the
components of two random vectors X ∈ R

p1 and
Y ∈ R

p2 . Given a set of n paired observations
(X1, Y1), . . . , (Xn, Yn), we form the design matrices
X ∈ R

n×p1 and Y ∈ R
n×p2 and find vectors u ∈ R

p1
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and v ∈ R
p2 that are solutions to the optimization

argmax
u,v

1

n
uTXT

Yv (1)

s.t.
1

n
uTXT

Xu ≤ 1
1

n
vTYT

Yv ≤ 1,

where the columns of X and Y have been standardized
to have mean zero and standard deviation one. This is
the sample version of the problem of maximizing the
correlation between the linear combinations uTX and
vTY , assuming the random variables have mean zero.

CCA can serve as a valuable dimension reduction tool,
allowing one to quickly zoom in on interesting phe-
nomena shared by multiple data sets. This tool is in-
creasingly attractive in genomic data analysis, where
researchers perform multiple assays per item. For in-
stance, data including DNA copy number (or compar-
ative genomic hybridization, CGH), gene expression,
and single nucleotide polymorphism (SNP) informa-
tion can be collected on a common set of patients.
Witten et al. (2009) present examples of recent stud-
ies involving such data.

When the data are high dimensional, as is often the
case for genomic data, the classical formulation of
CCA is not meaningful, since the sample covariance
matrices X

T
X and Y

T
Y are singular. This has mo-

tivated different approaches to sparse CCA, which
regularizes (1) by suitable sparsity-inducing ℓ1 penal-
ties (Witten et al., 2009; Witten & Tibshirani, 2009;
Parkhomenko et al., 2007; Chen & Liu, 2012). Spar-
sity can lead to more interpretable models, reduced
computational cost, and favorable statistical proper-
ties for high dimensional data. Existing methods for
CCA are, however, restricted in that they attempt to
find linear combinations of the variables—interesting
correlations need not be linear. The need for this flexi-
bility motivates the nonparametric approaches we con-
sider in this paper.
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The general nonparametric analogue of (1) is

argmax
f,g

1

n

n∑

i=1

f(Xi)g(Yi) (2)

s.t.
1

n

n∑

i=1

f2(Xi) ≤ 1
1

n

n∑

i=1

g2(Yi) ≤ 1

where f and g are restricted to belong to an appropri-
ate class of smooth functions. Bach & Jordan (2003)
introduce a version of this called kernel CCA by ap-
plying the “kernel trick” to the CCA problem. Kernel
CCA allows flexible nonparametric modeling of corre-
lations, solving (2) with additional regularization to
enforce smoothness of the functions f and g in ap-
propriate reproducing kernel Hilbert spaces. How-
ever, this general nonparametric model suffers from
the curse of dimensionality, as the number of samples
required for consistency grows exponentially with the
dimension. It is thus necessary to further restrict the
complexity of possible functions. We consider the class
of additive models which can be written as

f(x1, x2, . . . , xp1
) =

p1∑

j=1

fj(xj) (3)

g(y1, y2, . . . , yp2
) =

p2∑

k=1

gk(yk) (4)

in terms of univariate component functions
(Hastie & Tibshirani, 1986). In the regression
setting, such models no longer require the sample
size to be exponential in the dimension; however,
they only have strong statistical properties in low
dimensions. Recently, several authors have shown
how sparse additive models for regression can be effi-
ciently estimated even when p > n (Ravikumar et al.,
2009; Koltchinskii & Yuan, 2010; Meier et al., 2009;
Raskutti et al., 2010).

In this paper we propose two additive nonparamet-
ric formulations of CCA, one over a family of RKHSs
and another over Sobolev spaces without a reproduc-
ing kernel. In the low-dimensional setting where we
do not enforce sparsity, the formulation over Sobolev
spaces is closely related to the Alternating Conditional
Expectations (ACE) formulation of nonparametric re-
gression due to Breiman & Friedman (1985). In addi-
tion to formulating algorithms for the optimizations,
we provide risk consistency guarantees for the global
risk minimizer in the high dimensional regime where
min(p1, p2) > n.

An important consideration is that sparse nonpara-
metric CCA is biconvex, but not jointly convex in f
and g. This is true even for the linear CCA model,

which is a special case of the model we propose. In the
absence of the sparsity constraints the linear problem
reduces to a generalized eigenvalue problem which can
be efficiently solved. This remains true in the nonpara-
metric case as well. Over an RKHS, the problem with-
out sparsity is a generalized eigenvalue problem where
Gram matrices replace the data covariance matrices.
In the population setting over the Sobolev spaces we
consider, Breiman & Friedman (1985) show that the
problem reduces to an eigenvalue problem with respect
to conditional expectation operators.

Returning to the nonconvex sparse CCA problem,
Witten et al. (2009) and Parkhomenko et al. (2007)
suggest using the solution to the nonsparse version
of the problem to initialize sparse CCA; Chen & Liu
(2012) use several random initializations. As we show
in simulations, both approaches can lead to poor re-
sults, even in the linear case. To address this issue, we
propose and study a simple marginal thresholding step
to reduce the dimensionality, in the spirit of the diag-
onal thresholding of Johnstone & Lu (2009) and the
SURE screening of Fan & Song (2010). This results
in a three step procedure where after preprocessing we
use the nonsparse version of our problem to determine
a good initialization for the sparse formulation.

In Sections 2 and 3 we briefly describe the additive
Sobolev and RKHS function spaces over which we
work, introduce our two nonparametric CCA formu-
lations, and discuss their optimization. In Section 4
we address the non-convexity of the formulations and
initialization strategies. In Section 5 we summarize
the theoretical guarantees of these procedures when
p1, p2 > n and in Section 6 we describe some simula-
tions and real data experiments.

2. Sparse additive kernel CCA

Recall the linear CCA problem (1). We will now
derive its additive generalization over RKHSs. Let
Fj ⊂ L2(µ(xj)) be a reproducing kernel Hilbert space
of univariate functions on the domain of Xj , and let
Gk ⊂ L2(µ(yk)) be a reproducing kernel Hilbert space
of univariate functions on the domain Yk, for each
j = 1, . . . , p1 and k = 1, . . . , p2. We assume that
E[fj(Xj)] = 0 and E[gk(Yk)] = 0 for all fj ∈ Fj , and
gk ∈ Gk for each j and k. This is necessary to en-
force model identifiability. In practice, we will always
work with centered Gram matrices to enforce this (see
Bach & Jordan (2003)).

Denote by F = {f =
∑p1

j=1 fj(xj)|fj ∈ Fj} and

G = {g =
∑p2

k=1 gk(yk)|gk ∈ Gk} the sets of additive
functions of x and y, respectively.
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We are given n independent tuples of the form
(Xi, Yi)

n
i=1 where Xi = {Xi1, . . . , Xip1

} and Yi =
{Yi1, . . . , Yip2

}, and positive definite kernel functions
on each covariate of X and Y . We denote the Gram
matrix for the jth X covariate by Kxj and for the kth

Y covariate by Kyk.

We will need to regularize the CCA problem to enforce
smoothness and sparsity of the functions. The two
norms

‖fj‖Fj
=
√

〈fj , fj〉Fj
‖fj‖2 =

√
1
n

∑n
i=1 f

2
j (Xij)

play an important role in our approach. We can
now formulate the sparse additive kernel CCA (SA-

KCCA) problem as

max
f∈F,g∈G

1

n

n∑

i=1

f(Xi)g(Yi) subject to

(5)

1

n

n∑

i=1

f2(Xi) + γf

p1∑

j=1

‖fj‖2Fj
≤ 1

p1∑

j=1

‖fj‖2 ≤ Cf

1

n

n∑

i=1

g2(Yi) + γg

p2∑

k=1

‖gk‖2Gk
≤ 1

p2∑

k=1

‖gk‖2 ≤ Cg.

for given regularization parameters γf , γg, Cf and
Cg. As with the group LASSO, constraining
∑

j ‖fj‖2 encourages sparsity amongst the functions
fj Ravikumar et al. (2009). As stated, this is an in-
finite dimensional optimization problem over Hilbert
spaces. However, a straightforward application of the
representer theorem shows that it is equivalent to the
following finite dimensional optimization problem:

max
α,β

1

n





p1∑

j=1

Kxjαj





(
p2∑

k=1

Kykβk

)

subject to

(6)

1

n





p1∑

j=1

Kxjαj





T 



p1∑

j=1

Kxjαj



+ γf

p1∑

j=1

αT
j Kxjαj ≤ 1

1

n

(
p2∑

k=1

Kykβk

)T ( p2∑

k=1

Kykβk

)

+ γg

p2∑

k=1

βT
k Kykβk ≤ 1

p1∑

j=1

√

1

n
αT
j K

T
xjKxjαj ≤ Cf ,

p2∑

k=1

√

1

n
βT
k K

T
ykKykβk ≤ Cg.

Here α is an (n× p1) matrix, αj is its jth column, β is
an (n× p2) matrix and βk is its kth column.

The problem (6) is not convex. However, if we fix
the function g (or equivalently the coefficients β) the
problem is convex in f (equivalently α), and vice-versa.

This biconvexity leads to a natural optimization strat-
egy for (6) which we describe below. However, this
procedure only guarantees convergence to a local op-
timum and in practice we still need to be able to find
a good initialization.

In the absence of the sparsity penalty the prob-
lem becomes an additive form of kernel CCA
(Bach & Jordan, 2003). One could also consider al-
ternative formulations that, for instance, separate the
smoothness and variance constraints. One attractive
feature of our formulation is that without the sparsity
constraint the problem can be reduced to a generalized
eigenvalue computation which can be solved optimally.
This leads us to a strategy of biconvex optimiza-
tion that mirrors the linear algorithm of Witten et al.
(2009); specifically, initialize by solving the problem
without the sparsity constraints, fix α and optimize
for β and vice-versa until convergence. As our exper-
iments will show this is indeed a good strategy when
p1, p2 < n. However, new ideas, to be described in
Section 4, are necessary to scale this to the high di-
mensional setting where p1, p2 > n.

3. Sparse additive functional CCA

We now formulate an optimization problem for sparse
additive functional CCA (SA-FCCA), and derive a
scalable backfitting procedure for this problem. Here
we work directly over the Hilbert spaces L2(µ(x)) and
L2(µ(y)). We will denote by Sj the subspace of µ(xj)
measurable functions with mean 0, with the usual in-
ner product 〈fj , f ′j〉 = E

(
fj(Xj)f

′
j(Xj)

)
, and similarly

Tk for the functions of y.

To enforce smoothness we consider functions lying in
a ball in a second order Sobolev space. We further
assume the functions are uniformly bounded, and the
measures µ are supported on a compact subset of a
Euclidean space with Lebesgue measure λ. For a fixed
uniformly bounded, orthonormal basis ψjk with re-
spect to λ we have

Fj =
{
fj ∈ Sj : fj =

∞∑

k=0

βjkψjk,
∞∑

k=0

β2
jkk

4 ≤ C2
}

and similarly for Gk. We will call these the smooth

functions, and denote by F and G the set of smooth
additive functions over the respective Hilbert spaces.

Our formulation of sparse additive functional CCA is
the optimization

max
f∈F, g∈G

1

n

n∑

i=1

f(Xi)g(Yi) (7)
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s.t.
1

n

p1∑

j=1

n∑

i=1

f2j (Xij) ≤ 1,

p1∑

j=1

‖fj‖2 ≤ Cf

1

n

p2∑

k=1

n∑

i=1

g2k(Yik) ≤ 1,

p2∑

k=1

‖gk‖2 ≤ Cg

where the ‖.‖2 norm is defined as in additive kernel
CCA. This problem is superficially similar to (2); how-
ever, there are three important differences. First, we
don’t regularize for smoothness but instead work di-
rectly over a Sobolev space of smooth functions. Sec-
ondly, we do not constrain the variance of the function
f . Instead, in the spirit of “diagonal penalized CCA”
of Witten et al. (2009) we constrain the sum of the
variances of the individual fjs. This choice is made
primarily because it leads to backfitting updates that
have a particularly simple and intuitive form. Per-
haps most importantly, we can no longer appeal to
the representer theorem since we are not working over
RKHSs.

We study the population version of this problem to
derive a biconvex backfitting procedure to directly op-
timize this criterion. The sample version of the al-
gorithm is described in Algorithm 1, and a complete
derivation is part of the supplementary material. To
gain some intuition for this procedure we describe one
special case of the population algorithm, where g is
fixed and both constraints on f are tight. Consider
the Lagrangian problem

max
f

min
λ≥0,γ≥0

E[f(X)g(Y )]− λ(‖f‖22 − 1)− γ(‖f‖1 − Cf ).

The norms are defined as ‖f‖1 =
∑p1

j=1

√

E(f2j (xj))

and ‖f‖22 =
∑p1

j=1 E(f
2
j (xj)). For simplicity, consider

the case when λ, γ > 0, and denote a ≡ g(Y ).

We now can derive a coordinate ascent style procedure
where we optimize over fj holding the other functions
fixed. The Fréchet derivative w.r.t. fj in the direc-
tion η gives one of the KKT conditions E[(a− 2λfj −
γνj)η] = 0 for all η in the Hilbert space Hj , where the

subdifferential is νj =
fj√
E(f2

j
)
if
√

E(f2j ) is not 0, and

is the set {uj ∈ Hj |E(u2j ) ≤ 1} if
√

E(f2j ) = 0.

Using iterated expectations the KKT condition can
be written as E[(E(a |Xj) − 2λfj − γνj)η] = 0. De-
note E(a |Xj) ≡ Pj . In particular, if we consider
η = E[(E(a |Xj) − 2λfj − γνj ], we can see that
E[(E(a |Xj)−2λfj−γνj)] = 0, i.e., E(a |Xj)−2λfj−
γνj = 0 almost everywhere.

Then if
√

E(P 2
j ) ≤ γ, we have fj = 0, and we arrive

at the following soft thresholding update:

fj =
1

2λ



1− γ
√

E(P 2
j )





+

Pj .

Now, going back to the constrained version, we need
to select γ and λ so that the two constraints are tight.
To get the sample version of this update we replace the
conditional expectation Pj by an estimate Sja, where
Sj is a locally linear smoother.

Algorithm 1 Biconvex backfitting for SA-FCCA

input {(Xi, Yi)}, parameters Cf , Cg, initial g(Yi)

1. Compute smoothing matrices Sj and Tk.

2. Fix g. For each j, set fj ← Sjg
λ where λ =

√
∑p1

j=1(g
TST

j Sjg)

3. if
∑p1

j=1 ‖fj‖2 ≤ Cf , break

else let Fm denote the functions with max-
imum ‖.‖2 norm. Set all other functions to

0. For each f ∈ Fm, set f ← Cff
|Fm|‖f‖2

. If
∑p1

j=1 ‖fj‖22 ≤ 1, break

else set fj ←
(

1− γ√
‖Sjg‖2

)

+

Sjg
λ where λ =

√

∑p1

j=1

∥
∥
∥

(

1− γ√
‖Sjg‖2

)

+

Sjg
∥
∥
∥

2

2
and γ is cho-

sen so that
∑p1

j=1

√

gTST
j Sjg = Cf

4. Center by setting each fj ← fj −mean(fj).

5. Fix f and repeat above to update g. Iterate
both updates till convergence.

output Final functions f , g

4. Marginal Thresholding

The formulations of SA-KCCA and SA-FCCA above
are not jointly convex, but are biconvex. Hence, iter-
ative optimization algorithms may not be guaranteed
to reach the globally optimal solution. To address this
issue, we first run the algorithms without any sparsity
constraint. The resulting nonsparse collections of func-
tions are then used as initializations for the algorithm
that incorporates the sparsity penalties. While such
initialization works well for low dimensional problems,
as p increases, the performance of the estimator goes
down (Figure 1). To extend the algorithms to the high
dimensional scenario, we propose marginal threshold-
ing as a screening method to reject irrelevant variables
and run the SA-FCCA and SA-KCCA models on
the reduced dimensionality problem. For each pair
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Init p=10 p=25 p=50
Random 0.05 0.009 -0.02

Non-sparse 0.97 0.62 0.26

Table 1. Test correlation from functions estimated by SA-

FCCA for n = 75 samples, where Y1 = X2
1 , all other di-

mensions are Gaussian noise. Random initializations don’t
work well for all data sizes. Initializing with the non-sparse
formulation works well when n > p, but fails as p ≥ n.

of variables Xi and Yj , we fit marginal functions to
that pair by optimizing the criteria in either Equation
(6) or Equation (7) without the sparsity constraints
since we only consider one X and one Y covariate at
a time. We then compute the correlation on held out
data. This constructs a matrix M of size p1 × p2 with
(i, j) entry of the matrix representing an estimate of
the marginal correlation between fi(Xi) and gj(Yj).
We then threshold the entries of M to obtain a sub-
set of variables on which to run SA-FCCA and SA-

KCCA. Theorem 5.3 discusses the theoretical proper-
ties of marginal thresholding as a screening procedure,
and Section 6.2 presents results on marginal thresh-
olding for high dimensional problems.

5. Main theoretical results

In this section we will characterize both the func-
tional and kernel marginal thresholding procedures
and study the theoretical properties of the estimators
(6) and (7). We will state the main theorems and defer
all proofs to the supplementary material.

The theoretical characterization of these procedures
relies on uniform large deviation inequalities for the
covariance between functions. For simplicity in this
section we will assume all the univariate spaces are
identical. In the RKHS case we restrict our attention
to functions in a ball of a constant radius in the Hilbert
space associated with a reproducing kernel K. In the
functional case the univariate space is a second order
Sobolev space where the integral of the square of the
second derivative is bounded by a constant. With some
abuse of notation we will denote these spaces C. We
are interested in controlling the quantity

Θn = sup
fj ,gk

∣
∣
∣
∣
∣

1

n

n∑

i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣
∣
∣
∣
∣

where fj , gk ∈ C, j ∈ {1, . . . , p1}, k ∈ {1, . . . , p2}.
All results extend to the case when each covariate is
endowed with a possibly distinct function space.

Lemma 5.1 (Uniform bound over RKHS)
Assume supx |K(x, x)| ≤ M < ∞, for func-

tions fj(x) =
∑n

i=1 αijKx(x,Xij), gk(y) =

∑n
i=1 βikKy(y, Yik)

P






Θn ≥ ζ + C

√

log ((p1p2)/δ)

n
︸ ︷︷ ︸

ǫ






≤ δ

where C is a constant depending only on M , and ζ =
maxj,k

2
nEX∼xj ,Y∼yk

√∑n
i=1K(Xij , Xij)K(Yik, Yik)

Note that ζ is independent of the dimensions p1 and
p2 and that under the assumption that K is bounded,
ζ = O(1/

√
n). In some cases however this term can be

much smaller. The second term depends only logarith-
mically on p1 and p2 and this weak dependence is the
main reason our proposed procedures are consistent
even when p1, p2 > n.

Lemma 5.2 (Uniform bound for Sobolev spaces)
Assume ‖f‖∞ ≤M ≤ ∞, then

P






Θn ≥

C1√
n
+ C2

√

log ((p1p2)/δ)

n
︸ ︷︷ ︸

ǫ






≤ δ

where C1 and C2 depend only on M .

Lemma 5.1 is proved via a Rademacher symmetriza-
tion argument of Bartlett & Mendelson (2002) (see
also Gretton et al. (2004)) while Lemma 5.2 is based
on a bound on the bracketing integral of the Sobolev
space (see Ravikumar et al. (2009)). The Rademacher
bound gives a distribution dependent bound which can
in some cases lead to faster rates.

We are now ready to characterize the marginal thresh-
olding procedure described in Section 4. To study
marginal thresholding we need to define relevant and
irrelevant covariates. For each covariate Xj , denote

αj = sup
fj ,gk∈C,k∈{1,...,p2}

E(fj(Xj)gk(Yk))

with E(f2j ) ≤ 1,E(g2k) ≤ 1. A covariate Xj is con-
sidered irrelevant if αj = 0 and relevant if αj > 0.
Similarly, for each Yk we associate βk defined analo-
gously.

Now, assume that for every pair of covariates, we find
the maximizer of the SA-FCCA or SA-KCCA objec-
tive over the given sample, over the appropriate class
C and with E(f2j ) ≤ 1,E(g2k) ≤ 1. Recall that for
marginal thresholding we do not enforce sparsity. The
global maximization of the SA-KCCA objective can
be efficiently carried out since it is equivalent to a gen-
eralized eigenvalue problem. For SA-FCCA however,
the backfitting procedure is only guaranteed to find
the global maximizer in the population setting.
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Theorem 5.3 Given P (Θn ≥ ǫ) ≤ δ.

1. With probability at least 1−δ, marginal threshold-

ing at ǫ has no false inclusions.

2. Further, if we have that αj or βk ≥ 2ǫ then under

the same 1 − δ probability event marginal thresh-

olding at ǫ correctly includes the relevant covariate
Xj or Yk.

The importance of Lemmas 5.1 and 5.2 is that they
provide values at which to threshold the marginal co-
variances. In particular, notice that the minimum
sample covariance that can be reliably detected, with
no false inclusions, falls rapidly with n and approaches
zero even when p1, p2 > n.

In the spirit of early results on the LASSO of
Juditsky & Nemirovski (2000); Greenshtein & Ritov
(2004) we will establish the risk consistency or per-

sistence of the empirical maximizers of the two ob-
jectives. Although we cannot guarantee that we find
these empirical maximizers due to the non-convexity
this result shows that with good initialization the for-
mulations (6) and (7) can lead to solutions which have
good statistical properties in high dimensions.

For SA-KCCA we will assume that our algorithm
maximizes

1

n

n∑

i=1





p1∑

j=1

µjfj(Xij)





[
p2∑

k=1

γkgk(Yik)

]

over the classes

F =

{

f :f(x) =

p1∑

j=1

µjfj(xj),Efj = 0,Ef2j = 1,

‖µ‖1 ≤ Cf , ‖µ‖22 + γf

p1∑

j=1

‖fj‖2H ≤ 1

}

G =

{

g :g(x) =

p2∑

k=1

γkgk(yk),Egk = 0,Eg2k = 1,

‖γ‖1 ≤ Cg, ‖γ‖22 + γg

p2∑

k=1

‖fk‖2H ≤ 1

}

and for SA-FCCA we will assume that our algorithm
maximizes the same objective over the same class with-
out the RKHS constraint but which are instead in a
Sobolev ball of constant radius. Denote these solutions
(f̂ , ĝ).

We will compare to an oracle which maximizes the
population covariance

cov(f, g) ≡ E





p1∑

j=1

µjfj(xj)





[
p2∑

k=1

γkgk(yk)

]

Denote this maximizer by (f∗, g∗). Our main result
will show that these procedures are persistent, i.e.,
cov(f∗, g∗)− cov(f̂ , ĝ)→ 0 even if p1, p2 > n.

Theorem 5.4 (Persistence) If p1p2 ≤ en
ξ

for some

ξ < 1 and CfCg = o(n(1−ξ)/2), then SA-FCCA and

SA-KCCA are persistent over their respective func-

tion classes.

6. Experiments

6.1. Non-linear correlations

We compare SA-FCCA and SA-KCCA with
two models, sparse additive linear CCA (SCCA)
(Witten et al., 2009) and kernel CCA (KCCA)
(Bach & Jordan, 2003). Figure 1 shows the perfor-
mance of each model, when run on data with n = 150
samples in p1 = 15, p2 = 15 dimensions, where only
one relevant variable is present in X and Y (the re-
maining dimensions are Gaussian random noise). We
report two metrics to measure whether the correct cor-
relations are being captured by the different methods
- (a) test correlation on 200 samples, using the esti-
mated functions, and (b) precision and recall in iden-
tifying the correct variables involved in the correlation
estimation. Each result is averaged over 10 repeats of
the experiment. SinceKCCA uses all data dimensions
in finding correlations, its precision and recall are not
reported.

When the relationship between the relevant variables
is linear, all methods identify the correct variables
and have high test correlation. While KCCA should
be able to identify non-linear correlations, since it is
strongly affected by the curse of dimensionality, it has
poor test correlation even in p = 15 dimensions.

Both SA-FCCA and SA-KCCA correctly identify the
relevant variables in all cases, and have high test cor-
relation.

6.2. Marginal thresholding

We now test the efficiency of marginal thresholding
by running an experiment for n = 150, p1 = 150,
p2 = 150. We generate multiple relevant variables as:

fi(Xi) = cos
(π

2
Xi

)

, i ∈ {1, 3}, fi(Xi) = X2
i , i ∈ {2, 4}

Yj =

4∑

i=1;i6=j

fi(Xi) +N (0, 0.12) j ∈ {1, 2, 3, 4}

Thus, there are four relevant variables in each data set.
X and Y are sampled from a uniform distribution, and
standardized before computing fi(Xi). Each fi(Xi) is
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Test correlation Precision/Recall
Model SA-FCCA SA-KCCA SCCAKCCA SA-FCCA SA-KCCA SCCA

Y = X2 0.96 0.99 0.05 0.44 1/1 1/1 0.28/0.14

Y = abs(X) 0.98 0.99 0.06 0.35 1/1 1/1 0/0

Y = cos(X) 0.94 0.99 0.071 0.04 1/1 1/1 0.1/0.1

log(Y ) = sin(X) 0.91 0.93 0.22 0.09 1/1 1/1 0.71/0.66

Y = X 0.99 0.99 0.99 0.98 1/1 1/1 1/1

Figure 1. Test correlations, and precision and recall for identifying
relevant variables for the four different methods. SA-FCCA and SA-

KCCA find strong correlations in the data, in both linear and non-
linear settings. In all five data sets, SA-FCCA and SA-KCCA are
always able to find the relevant variables.

Figure 2. DLBCL data : The top row shows two
of the functions fi(Xi) with non-zero norms for
X in red, and the bottom row shows two func-
tions gj(Yj) with non-zero norms for Y in blue.

also standardized before computing Yj . We repeat the
experiment by generating data 10 times, and report
results in Table 2. Bandwidth in the different methods
was selected using a plug-in estimator of the median
distance between points in a single dimension. The
sparsity and smoothness parameters for all methods
were tuned using permutation tests, as described in
Witten et al. (2009), assuming that Cf = Cg = C,
and γf = γg = γ.

We ran marginal thresholding by splitting the data
into equal sized train and held out data, fitting
marginal functions on the train data, computing func-
tional correlation on the held out data, and picking
a threshold so that n/5 elements of the thresholded
correlation matrix are non-zero. We found that in
all experiments, marginal thresholding always selected
the relevant variables for the subsampled data. Table
2 shows the precision, recall and test correlations for
the different methods. As can be expected, SA-FCCA

and SA-KCCA are able to correctly identify the rele-
vant variables, and the estimated functions have high
correlation on test data.

We visualize the effect of the parameter tuning by plot-
ting regularization paths, as the sparsity parameter is
varied (n=100, p1=p2=12). For SA-FCCA and SA-

KCCA, the norm of each function is plotted, and for
sparse linear CCA, the absolute values of the entries
of u and v are shown. Figure 3 shows how, unlike
SCCA, SA-FCCA and SA-KCCA are able to sepa-
rate the relevant and non-relevant variables over the
entire range of the sparsity parameter.

6.3. Application to DLBCL data

We apply our non-linear CCA models to a data set of
comparative genomic hybridization (CGH) and gene
expression measurements from 203 diffuse large B-cell
lymphoma (DLBCL) biopsy samples (Lenz, 2008). We
obtained 1500 CGH measurements from chromosome

Method Test correlation Precision Recall
SA-FCCA 0.94 1 0.785
SA-KCCA 0.98 0.95 0.8

SCCA 0.02 0.02 0.36
KCCA 0.07 N/A N/A

Table 2. Test correlations, precision and recall for identi-
fying the correct relevant variables for the four different
methods (n = 150, p1 = 150, p2 = 150). Marginal thresh-
olding was used for selecting relevant variables before run-
ning SA-FCCA and SA-KCCA

1 of the data, and 1500 gene expression measurements
from genes on chromosome 1 and 2 of the data. The
data was standardized,andWinsorized so that the data
lies within two times the mean absolute deviation.

We used marginal thresholding to reduce the dimen-
sionality of the problem, and then ran SA-FCCA.
Permutation tests were used to pick an appropriate
bandwidth and sparsity parameter, as described in
Witten et al. (2009). We found that the model picked
interesting non-linear relationships between CGH and
gene expression data. Figure 2 shows the functions ex-
tracted by the SA-FCCA model from this data. Even
though this data has been previously analyzed using
linear models, we do not necessarily expect gene ex-
pression measurements from Affymetrix chips to be
linearly correlated with array CGH measurements,
even if the specific CGH mutation is truly affecting
the gene expression. Further, the extracted functions
in Figure 2 suggest that the changes in gene expres-
sion are dependent on the CGH measurements via a
saturation function - as the copy number increases, the
gene expression increases, until it saturates to a fixed
level, beyond which increasing the copy numbers does
not lead to an increase in expression. From a systems
biology view point, such a prediction seems reason-
able since single CGH mutations will not affect other
pathways that are required to be activated for large
changes in gene expression.
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Figure 3. Regularization paths for non-linear correlations in the data, for SA-FCCA, SA-KCCA and SCCA resp. The
paths for the relevant variables (in X and Y ) are shown in red, the irrelevant variables are shown in blue.

7. Discussion

In this paper we introduced two proposals for nonpara-
metric CCA and demonstrated their effectiveness both
in theory and practice. Several interesting questions
and extensions remain. CCA is often run on more than
two data sets, and one is often interested in more than
just the principal canonical direction. Chen & Liu
(2012) have proposed group sparse linear CCA for sit-
uations when a grouping of the covariates is known.
These extensions all have natural nonparametric ana-
logues which would be interesting to explore. As in
the case of regression (Koltchinskii & Yuan, 2010), the
KCCA formulation considered in this paper can also
be generalized to involve multiple kernels and kernels
over groups of variables in a straightforward way.

While thresholding marginal correlations one can
imagine exploiting the structure in the correlations. In
particular, in the (p1 × p2) marginal correlations ma-
trix we are looking for a bicluster of high entries in the
matrix. Leveraging this structure could potentially al-
low us to detect weaker marginal correlations. Finally,
an important application of kernel CCA is as a con-
trast function in independence testing. The additive
formulations we have proposed allow for independence
testing over more restricted alternatives but can be
used to construct interpretable tests of independence.
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