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Abstract

MAP inference for general energy functions
remains a challenging problem. While most
efforts are channeled towards improving the
linear programming (LP) based relaxation,
this work is motivated by the quadratic pro-
gramming (QP) relaxation. We propose
a novel MAP relaxation that penalizes the
Kullback-Leibler divergence between the LP
pairwise auxiliary variables, and QP equiva-
lent terms given by the product of the unar-
ies. We develop two efficient algorithms
based on variants of this relaxation. The al-
gorithms minimize the non-convex objective
using belief propagation and dual decomposi-
tion as building blocks. Experiments on syn-
thetic and real-world data show that the so-
lutions returned by our algorithms substan-
tially improve over the LP relaxation.

1. Introduction

We study the problem of maximum a posteriori (MAP)
inference in graphical models. The MAP task is to
compute a minimal energy assignment of a set of de-
pendent variables. This is a crucial problem in many
applications such as computational biology, natural
language processing and computer vision. In the gen-
eral case, MAP inference is intractable, and therefore
most of the current research efforts are concentrated
on finding efficient and accurate approximation algo-
rithms. In recent years, linear programming (LP) re-
laxations gained popularity due to their proven suc-
cess in relevant applications. Several efficient algo-
rithms have been developed to solve the linear program
emerging from the relaxation. Despite their success, in
many practical problems the solution attained by the
LP relaxations is still far from the global minima.
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Our work improves over the LP relaxation by lever-
aging on a second class of relaxations, namely the
quadratic programming (QP) relaxation. The QP for-
mulation offers a concise and compact description of
the MAP problem. We formulate a joint LP and
QP MAP objective, that encourages auxiliary vari-
ables present in the LP relaxation, to agree with their
counterpart in the QP relaxation, through a penalty
function. Despite of the non-convexity of this objec-
tive, we show that by slowly increasing the weight of
the penalty, the solutions found are either competitive
with, or in most cases better than the LP relaxation
solutions. This is in general not the case for the few
existing QP relaxation solvers.

We propose two variants of the penalty function, each
leading to a different LPQP objective. We show
that the resulting non-convex objectives can be de-
composed into a difference of convex functions, which
we solve using the convex-concave procedure (CCCP).
Having tackled the non-convexity with the CCCP, we
solve one of the remaining convex problems with the
dual decomposition method, and show that the other
can be addressed with the norm-product belief propa-
gation. Interestingly, the main computational task of
both of the resulting LPQP algorithms, turns out to
be solving known entropy-augmented LPs.

Our contributions are as follows: First we introduce
a combined LPQP objective, incorporating the QP
constraints through a soft penalty function in the ob-
jective. We propose two alternatives for the penalty
function, which differ in the way the edges in the graph
are weighted. Secondly, we derive CCCP based algo-
rithms for the LPQP objectives, and show that their
core computational effort reduces to current entropy-
augmented LP solvers. This demonstrates that these
modern LP solvers can in some cases be utilized in a
better way, leading to possibly faster convergence, as
well as lower energy MAP solutions. Through exper-
iments on various datasets, we demonstrate the per-
formance of the suggested LPQP MAP inference in
comparison to other commonly used solvers.
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2. Background and Notation

For an undirected graph G = (V, E), the MAP prob-
lem is to assign each node in the graph to a class or
category, such that the overall assignment minimizes
an associated energy. Let xi denote a discrete variable
with a finite domain Xi1, representing the assignment
of the i-th node. The MAP problem is defined as

min
x

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj). (1)

Where θi(xi) and θij(xi, xj) are unary and pairwise
potential functions associated with the node and edge
assignments. Problem (1) can be expressed as an in-
teger quadratic program using a K-ary coding:

min
µ

∑
i∈V

θTi µi +
∑

(i,j)∈E

µT
i Θijµj (2)

s.t. µi;k ∈ {0, 1} ∀i, k and
∑
k

µi;k = 1 ∀i.

The pairwise and unary potentials in (2), are repre-
sented as a matrix Θij and a vector θi, respectively.

Variational approaches to MAP inference reformulate
the combinatorial optimization problem in (1) as a
continuous optimization problem. The next sections
formally define two such approaches, namely the LP
and QP relaxations. In general, the LP minimization
results in a lower bound on the energy of the global
minimizer, while the QP results in an upper bound.

2.1. Linear Programming Relaxation

The LP approach (Schlesinger, 1976; Wainwright &
Jordan, 2008) is based on a convex relaxation of (2),
where an additional variable µij is included for each
edge. Proper local marginalization is enforced through
summation constraints. The LP reads as

min
µ∈LG

∑
i∈V

θTi µi +
∑

(i,j)∈E

θTijµij , (3)

with LG , the local marginal polytope:

LG =

µ
∣∣∣∣∣∣∣∣
∑
k µi;k = 1 ∀i ∈ V∑
l µij;kl = µi;k ∀k, (i, j) ∈ E∑
k µij;kl = µj;l ∀l, (i, j) ∈ E

µij;kl ≥ 0 ∀k, l, (i, j) ∈ E

 .

In the general case, LG is an inexact description of the
so called marginal polytope MG , which requires an
exponentially large number of constraints (Wainwright

1For notational convenience we assume Xi ={1, . . . ,K},
in the experiments we will however also consider settings
where the domain of the variables has different size.

& Jordan, 2008). If LG in (3) is replaced by MG ,
then the solution recovers the true MAP assignment.
A solution to an LP-based approach, admits an easy
to verify certificate of optimality. If the solution is
integer, it is the global optimum.

The work in (Sontag et al., 2008) proposes to tighten
the polytope by including summation constraints over
larger subsets of variables. This approach has been
successful in identifying the global minima for some
problems. However, it suffers from an increased com-
plexity as ultimately an exponentially large set of pos-
sible constraints might need to be searched over.

2.2. Quadratic Programming Relaxation

An alternative relaxation of the integer quadratic pro-
gram in (2) is obtained by simply dropping the integer
constraints. The resulting QP is given by:

min
µ

∑
i∈V

θTi µi +
∑

(i,j)∈E

µT
i Θijµj (4)

s.t. 0 ≤ µi;k ≤ 1 ∀i, k and
∑
k

µi;k = 1 ∀i.

A major advantage of the QP relaxation, is the fact
that it is tight. In this context the tightness means
that the minimizer of (4) is also the minimizer of (1),
as was shown in (Ravikumar & Lafferty, 2006). The
QP also benefits from a more compact description
compared to the LP relaxation, as it requires fewer
constraints and variables to formulate the exact MAP
problem. The variable vector µ, is of size K· |V| +
K2· |E| in the LP (3) and only K· |V| in the QP. The
biggest drawback of the QP relaxation, is that in the
general case the optimization problem is non-convex
due to the edges product term. This fact renders an
exact minimization difficult.

In terms of motivation, our work is similar to the QP
relaxation approach. The QP formulation of the MAP
problem (4) was introduced in (Ravikumar & Lafferty,
2006), but stems from classical mean-field approaches.
Ravikumar & Lafferty (2006) solved the non-convex
problem using a convex relaxation. The solution was
later improved in (Kappes & Schnoerr, 2008) through
a difference of convex functions formulation. Both
solvers are generic in the sense that they do not ex-
ploit the graph structure. Recently Kumar & Zilber-
stein (2011) introduced a message-passing algorithm
for solving the QP relaxation. While improving the
run time over the other two algorithms, it still gen-
erally suffers from poor solutions due to local min-
ima. The QP solvers often deal with this drawback by
restarting with different initializations. We observed
that our LPQP algorithms, are much more resilient
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with respect to the initialization. In all of the experi-
ments we conducted, a restart was never required. We
attribute this behavior to the gradual progression be-
tween the LP and QP. Finally, in concurrent work Ku-
mar et al. (2012) propose a hybrid LP and QP ap-
proach to MAP, similar to our formulation discussed
in the next section. The resulting optimization prob-
lem is solved by a custom message-passing scheme.
Our work on the other hand, in its essence reduces
to well-known entropy-augmented LP objectives, for
which efficient message-passing algorithms exist.

3. Combined LP and QP Relaxation

We propose to optimize an objective which is a com-
bination of the LP and QP relaxations. We retain
the auxiliary variables µij of the pairwise terms, but
force these variables to agree with the product of the
unary marginals µi and µj . The constraints, given by
vec(µiµ

T
j ) = µij ∀(i, j) ∈ E2, are enforced through

a penalty function g(· ) incorporated in the objective.
The extent to which the constraint is enforced, is reg-
ulated by the parameter ρ.

We focus on the Kullback-Leibler (KL) divergence as
the penalty function, due to the probabilistic nature
of the compared marginal terms. For probability dis-
tributions p and q of a discrete random variable, their
KL divergence is defined to be

DKL(p, q) :=
∑
k

pk log

(
pk
qk

)
.

The general form of the combined objective reads as

min
µ∈LG

θTµ+ ρg(µ). (5)

The first term is simply the LP objective (3), written
as a scalar product between the potential function,
and the concatenated unary and pairwise variables.
We investigate two constructions of the penalty term.
The constructions differ in the weighting of the edges.

Uniform Weighting The KL divergence is penal-
ized in the same way for all the edges in the graph:

guni(µ) :=
∑

(i,j)∈E

DKL(µij , vec(µiµ
T
j )). (6)

Tree-based Weighting The KL divergence is pe-
nalized uniformly within a forest-shaped sub-graph:

gtree(µ) :=
∑
a∈A

ηa

 ∑
(i,j)∈Ea

DKL(µij , vec(µiµ
T
j ))

 . (7)

2Here vec(µiµ
T
j ) denotes the vectorized version of the

outer product of µi and µj .

We assume that a decomposition of the original graph
into acyclic subgraphs exists, and is given by

Ga = (Va, Ea), V =
⋃
a∈A
Va, E =

⋃
a∈A
Ea.

The positive weights ηa are tree specific, and assumed
to sum to one. In this work we simply used ηa = 1/|A|.

For ρ = 0, (5) amounts to the standard LP relaxation.
On the other extreme when ρ → ∞, the constraints
vec(µiµ

T
j ) = µij ∀(i, j) ∈ E are fulfilled and the QP

relaxation is recovered. By successively increasing ρ
during the run of our algorithms, we achieve a gradual
enforcement of the constraints.

4. LPQP Algorithms

In this section we derive two algorithms for the non-
convex LPQP objective in (5), with the different
penalty terms in (6) and (7).

4.1. Difference of Convex Functions (DC)

The convex-concave procedure (CCCP) (Yuille & Ran-
garajan, 2003), can be applied to a constrained opti-
mization problem, where the objective is non-convex,
provided that the objective has a decomposition into
a convex and a concave part. In our setting, we wish
to find a decomposition of the form

min
µ∈LG

uρ(µ)− vρ(µ),

where both, uρ(µ) and vρ(µ) are convex. The CCCP
algorithm proceeds by iteratively solving a convexified
objective, obtained by a linearization of vρ(µ):

µt+1 = argmin
µ∈LG

uρ(µ)− µT∇vρ(µt). (8)

The decompositions of the two objectives, as well as
the gradients of the concave part, are shown in Fig-
ure 1. In the derivations we used the following identity

DKL(µij , vec(µiµ
T
j )) = H(µi) +H(µj)−H(µij),

which holds due to the marginalization constraints of
the pairwise marginals (Wainwright & Jordan, 2008).

For both objectives, the convex part uρ(µ) consists of
the original LP formulation, with an additional term
that encourages configurations with a large entropy.
This term in the uniform weights penalty, is the en-
tropy of the pairwise marginals, whereas in the tree-
based penalty, it is the sum of tree entropies.

The concave part of the decompositions, vρ, corre-
sponds to an entropy of the unary marginals. In the
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Uniform weighting Tree-based weighting

uρ(µ) = θTµ− ρ
∑

(i,j)∈E

H(µij) uρ(µ) = θTµ− ρ
∑
a∈A

ηa

 ∑
(i,j)∈Ea

H(µij)−
∑
i∈Va

(dai − 1)H(µi)


vρ(µ) = −ρ

∑
i∈V

diH(µi) vρ(µ) = −ρ
∑
a∈A

ηa
∑
i∈Va

H(µi)

∂vρ(µ)

∂µi;k
= ρdi(1 + log µi;k)

∂vρ(µ)

∂µi;k
= ρ

∑
a∈A(i)

ηa(1 + log µi;k)

Figure 1. Difference of convex function decomposition of the combined LPQP objective in (5) for the two different penalty
terms. Left : decomposition for the uniform penalty term in (6). Right: decomposition for the tree weighted penalty term
in (7). In both cases the derivative w.r.t. the pairwise marginal variables is zero. Here di denotes the degree of the i-th
node in the graph, and dai its degree in the sub-graph indexed by a. A(i) denotes the set of all trees that contain node i.
For a distribution p of a discrete random variable, H(p) denotes the entropy, H(p) := −

∑
k pk log (pk).

CCCP step (8), log(µi) is replaced by log(µti), the
marginal from the previous iteration, resulting in an
entropy approximation.

4.2. Algorithm Overview

The general scheme of the suggested LPQP algorithms
is shown in Algorithm 1. The algorithm consists of
two loops. The inner loop solves the DC problem for
a fixed penalty parameter ρ, whereas the outer loop
gradually increases the value of ρ.

Algorithm 1 LPQP algorithm scheme for MAP.

Require: G = (V, E),θ.
1: initialize µ ∈ LG uniform, ρ = ρ0.
2: repeat
3: t = 0,µ0 = µ.
4: repeat
5: µt+1 = argminτ∈LG uρ(τ )− τT∇vρ(µt).
6: t = t+ 1.
7: until ‖µt − µt−1‖2 ≤ εdc.
8: µ = µt.
9: increase ρ.

10: until ‖µ− µ0‖2 ≤ ερ.
11: return µ.

The main computational task is in line 5, where a par-
ticular instance of a convex optimization problem is
solved. Warm-starting the problem in line 5 with the
previous solution between successive calls, leads to a
substantial speed-up. We choose the initial ρ = ρ0
depending on the scaling of the energies, and use a
multiplicative increase with a fixed value. In the ex-
periments we use a multiplicative factor of 1.5, but the
results were not very sensitive to this choice.

Solution Rounding Similarly to the LP and QP
relaxations, the solutions returned by the LPQP al-
gorithms can be fractional. Since the LPQP scheme
ultimately solves a variant of the QP relaxation, to at-
tain the final integer solutions, we use the QP solution
rounding scheme suggested in (Ravikumar & Lafferty,
2006). Given a unary marginals vector µ∗, we assign
the i-th node the label x∗i given by

x∗i = argmin
k

θi;k +
∑

j∈N (i)

∑
l

θi,j;k,lµ
∗
j;l

 .

Here N (i) denotes the neighbors of node i. After de-
termining the label of the i-th variable, we set µ∗i;x∗i = 1
and µ∗i;k = 0 ∀ k 6= x∗i , and continue until labels
are assigned to all nodes. It can be verified that the
rounded solution has an energy that is smaller or equal
to the energy of the initial solution µ∗.

4.3. Uniform Weighting

The convex sub-problem we get in the CCCP step with
the uniform weighting penalty function (6), is given by

min
µ∈LG

∑
i∈V

θ̃Ti µi +
∑

(i,j)∈E

θTijµij − ρ
∑

(i,j)∈E

H(µij). (9)

where θ̃i, is a modification of the unary potentials
by an additional gradient term, originating in the lin-
earized part of the DC decomposition (8) 3.

θ̃i = θi − ρdi log(µti), (10)

3The ρdi term in ∇vρ is constant and can therefore be
dropped.
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As a result of this unary potentials modification, con-
figurations with small probability in the previous iter-
ation t, are vigorously dis-encouraged.

Belief Propagation The convex problem in (9) is
solved by the norm-product belief-propagation (BP)
algorithm (Hazan & Shashua, 2010). It is a primal-
dual ascent algorithm and is guaranteed to converge
to the global optimum for any choice of ρ > 0.

The norm-product algorithm applied to (9) computes
messages passed from node j to node i as follows

mj→i(xi) ∝∑
xj

ψ
1/ρ
ij (xi, xj)

ψ
1/(djρ)
j (xj)

∏
s∈N (j)m

1/(djρ)
s→j (xj)

m
1/ρ
i→j(xj)

ρ

here we define ψij(xi, xj) = exp(−θij(xi, xj)) and

ψi(xi) = exp(−θ̃i(xi)). Upon convergence the
marginals µi are obtained by multiplying the incoming
messages at variable i:

µi(xi) ∝

ψi(xi) ∏
j∈N (i)

mj→i(xi)

1/(diρ)

.

Due to warm starting with the previous DC iteration
solution, typically only few passes through the graph
are needed for the messages to converge in the later
stages of the run.

4.4. Tree-based Weighting

The convex sub-problem corresponding to the CCCP
step with the tree-based weighting penalty (7) is,

min
µ∈LG

∑
i∈V

θ̃Ti µi+
∑

(i,j)∈E

θTijµij−ρ
∑
a∈A

ηaH
a
tree(µ). (11)

Where we define the entropy of a tree by

Ha
tree(µ) :=

 ∑
(i,j)∈Ea

H(µij)−
∑
i∈Va

(dai − 1)H(µi)

 .

As before, the linearization of the concave part in the
CCCP step, results in a modification of the unaries

θ̃i = θi − ρ
∑

a∈A(i)

ηa log(µti). (12)

Dual Decomposition The dual decomposition
framework (Bertsekas, 1999; Komodakis et al., 2007),
can be applied to an optimization problem provided

that the objective can be decomposed into several sub-
problems, also known in the literature as the slave
problems. The global variables, µ in our case, are
replaced with local copies in each slave problem, de-
noted here by νa, such that the minimization of the
slave problems can be carried out independently. To
enforce the local variables corresponding to the same
original variables to assume the same value, a desig-
nated constraint is introduced. The optimization of
the sum of slave problems, subject to these constraints,
is called the master problem. A dual decomposition of
problem (11), was carried out in (Domke, 2011). We
use the same decomposition, but take a different route
optimizing the resulting master problem.

min
µ∈LG

∑
a∈A

min
νa∈LGa

sa(νa) (13)

s.t. νai = µi ∀i, a ∈ A.
νaij = µij ∀(i, j), a ∈ A.

Where the slave problems are defined as

sa(ν) :=
∑
i∈Va

θ̄Ti νi +
∑

(i,j)∈Ea

θ̄Tijνij − ρηaHa
tree(ν).

Note that since the summation over the trees now ex-
tends to include the unary and pairwise terms, the cor-
responding potentials should be adjusted accordingly

θ̄i =
θ̃i
|A(i)|

, θ̄ij =
θij

|A(i, j)|
.

Each slave problem is defined over a tree structured
graph and can therefore be solved exactly using the
sum-product algorithm, in two passes over the tree.
The temperature in this case is ρηa. We solve the
dual of the master problem using the FISTA (Beck
& Teboulle, 2009) algorithm. A similar solution was
demonstrated in (Savchynskyy et al., 2011), on a more
restricted decomposition. We refer to the appendix for
more technical details.

4.5. Entropy-augmented LP Solvers

Recently, several works (Jojic et al., 2010; Savchyn-
skyy et al., 2011) proposed to smooth the LP objective
by adding a term that favors entropic marginals. The
merit of this additional term is in overcoming the non-
smoothness of the objective. In order to ultimately
solve the original LP, these entropy-augmented solvers
progressively lower the entropy term. Naturally, the
convergence of these algorithms is fairly fast in the be-
ginning. This line of research originates in Nesterov’s
work on fast gradient methods (Nesterov, 1983).

The proposed LPQP solvers have the opposite behav-
ior with respect to the smoothness of the objective.
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The influence of the entropy term is rather increased
through the progression of the algorithm, leading to
favorable convergence properties.

5. Experiments

We use LPQP-U to refer to the implementation of the
uniform weighting penalty, and LPQP-T for the tree-
based weighting. In the experiments where the graph
did not have a natural decomposition, we used a depth-
first search algorithm to construct a tree decomposi-
tion in a greedy fashion for LPQP-T.

Benchmarked Methods We compare the perfor-
mance of LPQP-U and LPQP-T with the widely used
MAP algorithms, tree-reweighted belief propagation
(TRWS) (Kolmogorov, 2006) and max-product LP
(MPLP) (Sontag et al., 2008), both of which are LP
relaxations. For both algorithms we used the imple-
mentation made available by the authors. These al-
gorithms represent different trade-offs in performance.
TRWS is a highly efficient message-passing algorithm
for the standard LP relaxation. It is much faster than
the MPLP, especially on large instances where the
MPLP convergence is pretty slow. MPLP on the other
hand, initially solves the LP relaxation over the local
polytope, and in later iterations includes additional
summation constraints over sets of three or four vari-
ables. This strategy naturally leads to lower (better)
energy solutions, on instances where the LP relaxation
is not tight. The MPLP was shown to identify the
global optimum for some problems.

Performance Measures In this work we mainly
compared the quality of the solutions, which in the
MAP setting is most naturally measured by the en-
ergy associated with an assignment (1). Strictly com-
paring energy values is problematic for two reasons.
The values lack proper scaling required for quantita-
tive comparison of different results on the same prob-
lem instance, and are not comparable across instances.
We therefore exercise the following scoring procedure.
Let e1, . . . , eJ denote the energies of the compared so-
lutions, we set

si =
max1≤j≤J(ej)− ei

max1≤j≤J(ej)−min1≤j≤J(ej)
(14)

as the score of the i-th method. This scheme assigns
the worst and the best methods, scores of zero and one
respectively. The remaining methods get a fraction
relative to their value between the best and the worst
result. This procedure is not flawless since the scores
are still computed relative to the worst energies. It was
most often the case though, that TRWS was the lowest

scoring method. Being an often used algorithm with
provable merits, using it as a normalizing measure is
in our opinion a sensible choice. In experiments where
the optimal value is known, we use this value instead
of min1≤j≤J ej . In addition to comparing the quality
of the solution, we comment about the trends in the
efficiency (run-time) of the various methods.

5.1. Synthetic Potts Model Data

We follow a similar experimental setup as in (Raviku-
mar et al., 2010). The graph is a 4-nearest neigh-
bor grid of varying size. We used M = 60, 90, 120
where M is the grid side-length, and M2 is the over-
all number of variables. We used K = 2 and K = 5
for the number of states. The unary potentials were
randomly set to θi;k(xi) ∼ Uniform(−σ, σ), and for
σ we used values in [0.05, 0.5]. Note that the prob-
lem instance gets harder for small values of σ, this pa-
rameter can be understood as the signal-to-noise ratio.
The pairwise potentials θij(xi, xj), were set to penal-
ize agreements or disagreements of the labels, by an
amount αij ∼ Uniform(−1, 1), chosen at random. We
set θij(xi, xj) = 0 if xi 6= xj and αij otherwise. In this
experiment we choose the graph decomposition for the
LPQP-T solution as the vertical and horizontal split
of the grid edges. The two trees have all the original
nodes in common, but no overlapping edges.

The results of the comparison using the performance
measure given in (14), are presented in Table 1. For
each choice of parameters, we averaged the scores of 5
runs. Furthermore, Figure 2 shows the progress of the
objective during a run of the LPQP-U algorithm.

M (size) 60 90 120
K (# states) 2 5 2 5 2 5

σ = 0.05
MPLP 0.71 0.99 0.51 0.96 0 0.95
LPQP-U 0.97 0.99 0.97 1 0.98 1
LPQP-T 1 0.97 1 0.98 1 0.98
TRWS 0 0 0 0 0.39 0

σ = 0.5
MPLP 1 1 1 1 1 0.99
LPQP-U 0.99 0.92 0.99 0.91 1 0.94
LPQP-T 0.99 0.95 0.99 0.94 0.99 0.96
TRWS 0 0 0 0 0 0

Table 1. Averaged scores achieved by the MAP solvers on
the synthetic grid data. The scores, computed according
to (14), assign in each run 1 and 0 to the best and the worst
objective values. The remaining algorithms get a fractional
score reflecting their relative objective value.

In terms of running time, TRWS was always first to
output a solution, followed by the LPQP algorithms.
MPLP was always slower and on the larger instances
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Figure 2. Development of the different objectives (for the
same µ) during a run of the LPQP-U. The decoded objec-
tive refers to the current solution independently rounded
to integer values. The vertical lines show iterations where
ρ was increased. The horizontal lines show the energy of
the solution found by TRWS and MPLP, respectively.

did not converge within a predefined maximal time.
We therefore restricted the number of tightening iter-
ations of MPLP to a maximum of 1000. A tightening
iteration includes additional constraints into the lo-
cal marginal polytope. Even after this change, MPLP
was still considerably slower than the other algorithms.
Between the LPQP algorithms, the LPQP-U was most
often faster than LPQP-T.

As we expect, TRWS returned the worst assignment
on almost all configurations. The energies obtained
by LPQP-U, LPQP-T and MPLP were in general very
close. We observe that both of the LPQP algorithms,
returned slightly better solutions in comparison to the
MPLP, when the potentials were sampled with lower
signal-to-noise ratio σ.

The run time of LPQP-T seems to be mostly influ-
enced by the structure of the decomposition. In later
experiments where the decomposition consisted of a
larger number of trees with more variables in com-
mon, the LPQP-T was significantly slower compared
to the LPQP-U. In terms of the energy of the solu-
tions, the two algorithms were very similar. For this
reason we report from now on the LPQP-U only. The
LPQP-T can still be beneficial in settings where the
computations are done on a distributed system.

5.2. Protein Design & Prediction

The protein inference problem discussed in (Yanover
et al., 2006), consists of two tasks: protein side-chain
prediction and protein design. For the protein predic-
tion task, it was shown in (Yanover et al., 2006) that
only for 30 out of the 370 protein prediction instances,
the LP relaxation is not tight. For 28 of them, the
true MAP was computed using general integer pro-
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Figure 3. Protein prediction results for instances where the
LP is not tight. LPQP-U improves on TRWS in all but one
cases. For 20 of the 28 instances LPQP finds the true MAP.

gramming techniques, Figure 3 visualizes the results
on these instances. The LPQP found the global min-
imum of roughly 2/3 of these more difficult instances.
On the remaining 340 instances, the LP is tight. The
LPQP found the global optimum in all but three cases
(results are not shown). MPLP was applied to this
task in (Sontag et al., 2008), and achieved the global
optimum on all instances.

The protein design task consists of 97 instances. We
used MPLP to compute the global optimum, but for
one of the instances, MPLP did not finish within a
time-budget of 7 days. The average scores for the re-
maining 96 instances are as follows. LPQP-U: 0.93,
MPLP: 1 and TRWS: 0.03. The average energies are:
LPQP-U: −184.06, MPLP: −184.60, TRWS: −173.55.
The QP message-passing algorithm in (Kumar & Zil-
berstein, 2011), was tested on this task as well. The
evaluation criteria used in this work was the average
(across the 97 instances) percentage of the optimal
value. While the reported average value in (Kumar
& Zilberstein, 2011) is 97.7%, our solution achieves
99.7% percentage of the optimal value on average.

5.3. Decision Tree Fields

As a last experiment we apply our LPQP algorithm
to the recently published “hard discrete energy min-
imization instances” dataset (Nowozin et al., 2011),
available on the authors webpage. The task is to fill
in, or inpaint, a blanked out area in a binary image
of Chinese handwritten characters, see Figure 4. The
dataset consists of 100 energy minimization instances,
and comes with approximate MAP solutions obtained
using simulated annealing (SA) inference, which was
found to work better than TRWS. For 43 instances
the LPQP algorithm obtained better solutions than
the previously best known solutions. Figure 4 visual-
izes some of the instances where the LPQP algorithm
leads to a better solution. We observed that the SA so-
lutions seem to hallucinate too much regularity which
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Figure 4. Results for the Chinese character inpainting
dataset. Top: results obtained by LPQP-U. Middle: so-
lutions from (Nowozin et al., 2011) obtained by simulated
annealing. Bottom: Energy difference between the simu-
lated annealing solution and the LPQP solution, the larger
the value is, the better the LPQP solution is.

is not supported by the underlying energy. The scoring
of the three algorithms is as follows. LPQP-U: 0.84,
SA: 0.74 and TRWS: 0.21. We failed to apply MPLP
as the tightening operation did not succeed.

6. Conclusions

We introduce a novel formulation for MAP inference
in graphical models, combining the LP and QP relax-
ation terms through a KL divergence measure. The
resulting problem, albeit being non-convex, gives rise
to efficient algorithms built upon known LP solvers.
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