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Abstract

In many applications of time series models,
such as climate analysis and social media
analysis, we are often interested in extreme
events, such as heatwave, wind gust, and
burst of topics. These time series data usu-
ally exhibit a heavy-tailed distribution rather
than a Gaussian distribution. This poses
great challenges to existing approaches due to
the significantly different assumptions on the
data distributions and the lack of sufficient
past data on extreme events. In this paper,
we propose the Sparse-GEV model, a latent
state model based on the theory of extreme
value modeling to automatically learn sparse
temporal dependence and make predictions.
Our model is theoretically significant because
it is among the first models to learn sparse
temporal dependencies among multivariate
extreme value time series. We demonstrate
the superior performance of our algorithm to
the state-of-art methods, including Granger
causality, copula approach, and transfer en-
tropy, on one synthetic dataset, one climate
dataset and two Twitter datasets.

1. Introduction

Time series analysis and modeling have been exten-
sively studied in the literature and successfully found
applications across domains (Box & Jenkins, 1990;
Hamilton, 1994). In many applications, such as cli-
mate science, social media analysis and smart grid, we
are mostly interested in revealing the temporal depen-
dence and make predictions of extreme events. For
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example, climate change is mostly characterized by
increasing probabilities of extreme weather patterns
(IPCC, 2007), such as temperature or precipitation
reaching extremely high value. Therefore quantifying
the temporal dependence between the extreme events
from different locations and make effective predictions
are important for disaster prevention; in social me-
dia analysis, burst of topics, i.e., buzz, is reflected by
extremely high frequency of related words. Uncover-
ing the temporal dependencies between buzzes could
reveal valuable insights into information propagation
and achieve much better accuracy for buzz prediction.

Identifying temporal dependencies between multiple
time-series data is a topic of significant interest
(Arnold et al., 2007; Lozano et al., 2009a;b). Many
algorithms are proposed to automatically recover the
temporal structures, such as autocorrelation, cross-
correlations (Box & Jenkins, 1990), randomization
test (Edgington & Onghena, 2007), Granger causal-
ity (Granger, 1980), transfer entropy (Beirlant et al.,
1997; Barnett et al., 2009), and so on. However, uncov-
ering temporal dependency for extreme values is much
more challenging than classical observations since the
distributions of extreme values are more complex and
significantly different from the commonly used Gaus-
sian distribution. In addition, the lack of sufficient
past observations on extreme events poses difficulties
in modeling and attributing such events.

The statistical approach we can utilize to solve these
important problems is the theory of extreme value
modeling (Coles, 2001; Beirlant et al., 2004), which
provides a natural family of probability distributions
for modeling the magnitude of the largest (or smallest)
of a large number of events, and a canonical stochas-
tic process model (Coles, 2001) for the occurrence of
events above a very high (or below a very low) thresh-
old. In the past decade, extreme value modeling has
attracted a lot of research efforts in statistics, finance,
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and environmental science, particularly on modeling
temporal and spatio-temporal extreme value (Coles &
Tawn, 1996; Ferro & Segers, 2003; Huerta & Sanso,
2007). However, all of the work above model tempo-
ral or spatial dependence with predefined covariance
structures (e.g. without independence considerations).
Furthermore, most general discussions of dependen-
cies in multivariate extreme value modeling has been
focused on pairwise relationships. This is obviously
unrealistic and demands a significant contribution on
automatically learning the temporal structures from
the data for better analysis and modeling.

In this paper, we propose a sparse latent space model,
namely sparse-GEV model, to solve the problem. The
basic idea of our approach is to model the multivariate
extreme value time series as a latent space model. The
latent variables, corresponding to the location param-
eters (which determine the mode) of extreme value dis-
tributions for time series at certain time, are modeled
by the location parameters of all time series in history,
through a dynamic linear model (DLM). By impos-
ing an L1-penalty with respect to the regression coef-
ficients in DLM, we could establish meaningful tempo-
ral dependencies between a small subset of time series
and the concerned time series of extreme values. To
estimate parameters of the model, we develop a itera-
tive searching algorithm based on the generalized EM-
algorithms and sampling with particle filtering. Our
model is significant because it is among the first models
to reveal the temporal dependencies between multiple
extreme value time series. In addition, our experiment
results demonstrate the superior performance of our
model to other state-of-art methods on both learning
temporal dependence and predicting future value.

The rest of the paper is organized as follows: we first
describe the details of our proposed model in Section
2, then we review the existing work and discuss their
connections to our model in Section 3, we show the
experiment results in Section 4, and finally we sum-
marize the paper with hints on future work.

2. Methodology

Preliminaries Before diving into the details of our
model, we first briefly review the extreme value the-
ory (Coles, 2001). Let X1, · · · , Xm be a sequence of
independent and identically distributed random vari-
ables, and let Mm = max{X1, · · · , Xm}. If there exist
sequences of constants am > 0 and bm such that

Pr

(
Mm − bm

am
≤ z
)
→ G(z) as m→∞ , (1)

for some non-degenerate distribution function G, then
G should belong to the generalized extreme value
(GEV) families, namely

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
+

}
, (2)

defined on {z : 1 + ξ(z − µ)/σ > 0}, where µ (−∞ <
µ < ∞) is the location parameter, σ (σ > 0) is the
scale, and ξ (−∞ < ξ <∞) is the shape parameter ξ,
which governs the tail behavior of the distribution.

One popular GEV distribution is the Gumbel distri-
bution when ξ → 0, whose pdf is defined as

p(z|µ, σ) =
1

σ
exp

{
−z − µ

σ
− exp

(
−z − µ

σ

)}
. (3)

It has been shown that the maximum value in a sam-
ple of a random variable following an exponential fam-
ily distribution (such as Gaussian, Lognormal and
Gamma distributions) converge to the Gumbel distri-
bution. One special property of the Gumbel distri-
bution is that the mode is determined solely by the
location parameter µ.

2.1. Model Description

Given multivariate time series data, our goal is to build
an effective model that can recover temporal depen-
dence between extreme value time series (block max-
ima or peaks over threshold) and make accurate pre-
dictions for future extreme events. To achieve a robust
and interpretable model, a natural choice is to cap-
ture the temporal dependence via linear models; how-
ever, this is not directly achievable on extreme value
variables since their temporal dependence is obviously
nonlinear. To solve the problem, we propose latent
models in which the location parameters of GEV dis-
tributions are latent variables and the temporal de-
pendence between extreme value variables is captured
via the latent variables through dynamic linear model.
We choose the location parameters because they cap-
ture the mode of extreme value variables and can be
modeled reasonably well by linear dependence.

Formally, let x1, . . . ,xP denote P number of extreme
value time series and each time series xi have T ob-
servations, i.e., xi = {xi1, . . . , xiT }1, we define the joint

1 In extreme value theory, two main sets of methods,
the Block Maxima method and the Peaks over Thresh-
olds method have been developed to model extreme val-
ues (Coles, 2001). In the rest of the paper, we use Block
Maxima method as an example to describe our model. No-
tice that our methodology is applicable to the Peaks over
Thresholds approach by defining a point process model and
in the experiments we have used both approaches.
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probability of observations {xit} and their associated
location parameter {µit} as:

p({xit}, {µit}|β,σ, c) = (4)

P∏
i=1

T∏
t=L+1

p(xit|µit, σi)p(µit|{µ
j
t−l},β, c),

where p(xit|µit, σi) can be modeled by a GEV distribu-
tion such as the Gumbel distribution in eq(3) with σi

as the scale parameter specific to time series xi, {µjt−l}
is the history of all time series at time t with a maxi-
mal lag of L, and p(µit|{µ

j
t−l},β, c) can be modeled by

a dynamic linear model as follows,

µit = ci +

L∑
l=1

P∑
j=1

βij,lµ
j
t−l + ε. (5)

where ci is the offset specific to time series i, βi are
the coefficients, and ε is a Gaussian noise with variance
τ2. As we can see, the temporal dependence between
xi and xj is now captured via the coefficients β. By
adding a shrinkage Laplace prior over β when maxi-
mizing the likelihood function, i.e.,

{β̂, σ̂, ĉ} = arg max `(x1, . . . ,xP ;β,σ, c)+

P∑
i=1

λ‖βi‖1,

(6)
where λ is the regularization parameter, we can ob-
tain the sparse solution of β. Finally, we determine
that xi temporally depends on xj if the correspond-
ing value of βij is non-zero. In this way, our model
not only can provide better understanding of potential
causes of the extreme events, but also helps to achieve
more accurate prediction of the extreme events in the
future. This model is later referred to as the Sparse-
GEV model.

2.2. Inference and Learning

Given the existence of hidden variables in the sparse-
GEV model, directly maximizing the likelihood as in
eq(6) is not feasible. Therefore we applied the gener-
alized EM-algorithm to solve the problem.

Next, we use Gumbel distribution as an example to
demonstrate how we can make efficient inference and
learning in the proposed model. In the EM algorithm,
we optimize the following function via two steps:

Q(β,σ, c;βold,σold, cold) = −
P∑

i=1

T∑
t=L+1

ln(σi)

− E{µ|X,βold,σold,cold}

[
xit − µi

t

σi
+ exp

(
−x

i
t − µi

t

σi

)

+
1

2

(
µi
t − ci −

∑L
l=1

∑P
j=1 β

i
j,lµ

j
t−l

τ

)2
 . (7)

E Step Directly calculating the expectations in eq(7)
is infeasible given the form of the posterior prob-
ability, therefore we apply sampling algorithms for
approximation. In order to generate samples from
p
{
µ|X,βold,σold, cold

}
, we use the particle filtering

algorithm (Doucet & Johansen, 2009). The major
challenge is that in each iteration of particle filtering,
we need to draw samples from p(µit|xit, {µ

j
t−l}), which

cannot be calculated analytically. Instead, we use the
following proposal function:

N
(
µ̃i
t + γiτ − σiW0

(
γ2
i exp

(
µ̃i
t − xit
σi

+ γ2
i

))
,

τ2

γ2
i + 1

)
,

where W0 is the Lambert W function, γi = τ/σi,
and µ̃it is calculated using the history, i.e., µ̃it =

ci,old +
∑L
l=1

∑P
j=1 β

i,old
j,l µ̃jt−l. The rationale behind

this choice is to approximate the posterior distribution
p
{
µ|X,βold,σold, cold

}
with a Gaussian distribution

with the same mode and similar variance.

Notice that particle filtering may encounter the chal-
lenge of “miniscule weights” if the sequence length is
long. Therefore the resampling step is usually applied
at each time stamp to resolve the issue (Doucet & Jo-
hansen, 2009). For very long time series, particle filter-
ing does face some other challenges, but can be fixed
using particle smoothing (Doucet & Johansen, 2009).

M Step The optimization problem for updating βi

and ci is as follows:

min
βi,ci

Eµ|x
T∑

t=L+1

µit − ci − L∑
l=1

P∑
j=1

βij,lµ
j
t−l

2

+ λ
∥∥βi∥∥

1
,

where the expectation is computed from the samples.
As we can see, the optimization function has the Lasso
format and can be solved efficiently by algorithms
such as coordinate descent (Wu & Lange, 2008). The
parameter estimation for the Gumbel distribution it-
self is not a trivial problem. In general, the MLE is
the widely accepted approach to estimate the shape
and scale parameters, and Newton-Raphson or quasi-
Newton methods can be applied to solve the resulting
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optimization problem (Evans et al., 2000). Therefore
we estimate σ by the Newton-Raphson algorithm.

2.3. Prediction

In order to make predictions on the future value of
extreme events, for example xiT+1, given the extreme
value time series up to time T , we can first estimate the
mean µ̄iT+1 using the samples drawn from the posterior
distribution with the learned parameters. Based on
the model defined in eq(4), we can predict xiT+1 as

x̂iT+1 = µ̄iT+1 + γEσ
i,

where µ̄iT+1 = ci +
∑L
l=1

∑P
j=1 β

i
j,lµ̄

j
T−l+1, and γE(≈

0.5771) is the Euler constant.

2.4. Scalability

The computational complexity of Sparse-GEV de-
pends on two factors: the number of EM iterations
required for convergence and the scalability of E-Step
and M-Step. In Section 5, we empirically show that
EM usually converges within a small number of itera-
tions. In the M-Step, while there are efficient solvers
for both equations, the problems for different time se-
ries are independent and can be implemented in par-
allel. The particle filtering in E-Step is notoriously
efficient for sampling from time series mainly due to
three reasons: (i) it requires only one iteration to gen-
erate the samples, (ii) the generated samples are inde-
pendent; no burn-in period or decoupling is required
and (iii) at each time stamp the sampling procedures
in different locations are independent from each other
and can be implemented in parallel. Therefore our al-
gorithm is scalable and could be easily applicable to
practical applications.

3. Related Work and Discussions

Very recently, a few advanced approaches have been
explored to uncover temporal dependence from time
series data, including Lasso-Granger (Arnold et al.,
2007), transfer entropy (Schreiber, 2000), and the cop-
ula approach (Liu et al., 2009). In this section, we
discuss how these algorithms can be applicable to ex-
treme value time series analysis and their connections
to Sparse-GEV.

3.1. Related Work

Granger causality In (Arnold et al., 2007), the
Lasso-Ganger algorithm, an effective and efficient ap-
proach to learn sparse temporal graphs, is developed
by combining Granger causality with sparse neighbor-
hood selection using L1-penalized regression. More

specifically, given p number of time series, x1, . . . ,xp,
where xi = {xit : t = 0, . . . , T}, let XLagged

t,L repre-
sent the concatenated vector of all the lagged vari-
ables (with a maximal lag of L) of up to time t, i.e.,
{xt−lj : j = 1, . . . , p, l = 1, . . . , L}. Then the tempo-
ral graphs can be learned by the following regularized
regression:

β̂i(λ) = arg min
βi

(

T∑
t=1

‖xti−X
Lagged
t,L βi‖2+λ‖βi‖1), (8)

where there is an edge from xj to xi if and only if
at least one of the corresponding coefficients in β̂i is
non-zero. The Lasso-Granger algorithm can be di-
rectly applied to extreme value observations to infer
the dependency graph, but obviously this violates the
common assumptions of linear dependency in Granger
causality.

Transfer Entropy Solution Transfer entropy is usu-
ally employed when the data do not follow the auto-
regressive model and a nonlinear generalization of
the Granger causality framework is desirable. In the
Transfer entropy framework (Schreiber, 2000), time se-
ries xi is thought to be a cause of another time series
xj if the values of xi in the past significantly decrease
the uncertainty in the future values of xj given its
past. The amount of decrease in the uncertainty can
be quantified as

Txi→xj = H(xjt |xit−L:t−1)−H(xjt |x
j
t−L:t−1, x

i
t−L:t−1),

where H(x) is the Shannon entropy of the random
variable x. Since the transfer entropy is a pairwise
quantity, we can use its output as input to a graph
learning algorithm, for example, IAMB (Tsamardi-
nos et al., 2003), to uncover the temporal dependency
among multiple time series.

The transfer entropy approach can be used to uncover
causality relationship among extreme value time series
since it does not rely on any particular assumptions on
the distribution of the time series.

Copula Approach The copula approach has been
proposed for dependency analysis of time series
with non-Gaussian marginal distributions (Embrechts
et al., 2002). It has been used for forecast in time
series (Leong & Valdez, 2005) and learning sparase
dependency structures (Liu et al., 2009). In a copula
framework, e.g., Gaussian copula, the marginal distri-
bution of the time series Xi are estimated as F̃i. Next
the observations are transformed to the Gaussian cop-
ula domain as U it = Φ−1(F̃i(X

i
t)), where Φ is the cdf

of the unit Gaussian distribution. Finally the tempo-
ral causal graph can be uncovered by analysis of de-
pendency among U it using algorithms such as glasso
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algorithm (Friedman et al., 2008). We report an edge
from node i to node j if the precision matrix has at
least one non-zero element from lagged U jt−` to U it , for
` ≥ 1. The method in (Leong & Valdez, 2005) can be
used for predicting the future values of the time series.

In order to uncover temporal dependencies among ex-
treme value time series, we can either estimate the
marginals with a non-parametric density estimator or
use the GEV distribution to estimate the marginal dis-
tribution. For extreme value time series, the latter is
preferred since the non-parametric approximation of
the marginal distributions could lead to over-fitting
when the number of observations is scarce.

3.2. Connections to existing algorithms

The connections between our algorithm with existing
algorithms can be established by considering Sparse-
GEV, transfer entropy and the copula approach as
extensions of the Granger causality framework. The
copula approach leverages the marginal distribution
of the time series to map the observations to another
space and assumes linear dependence in the new space.
Sparse-GEV discovers the Granger causality relation-
ship among the latent variables from which the ob-
servations have been generated. The transfer entropy
approach generalizes the Granger causality framework
by finding the Granger causality type relationships
from the uncertainty of the time series. In fact, when
the data are distributed according to Gaussian lin-
ear model, transfer entropy is equivalent to Granger
causality (Barnett et al., 2009).

For high-dimensional time series, the number of obser-
vations is much less than the parameters of the model.
The Lasso-Granger algorithm benefits from the vari-
able selection properties of Lasso. (Meinshausen &
Bühlmann, 2006) show that the Lasso variable selec-
tion loss, and subsequently the Lasso-Granger’s loss
(Arnold et al., 2007), vanishes with an exponential
rate. For the copula approach, (Liu et al., 2009)
show that when copula-based model is the true model,
the copula-based structure learning algorithm with
non-parametric estimation of marginals converges to

the true graph with a rate of O
(√

log(n)
n1−ξ

)
for some

ξ ∈ (0, 1), which is far slower than the exponential
convergence of Lasso-Granger. The performance of
transfer entropy heavily relies on the accuracy of en-
tropy estimations, which require a large number of
observations, especially for high dimensional distribu-
tions, to achieve robust estimation (Beirlant et al.,
1997). For example, the Nearest Neighbor Estimator
converges with root-n rate, which is again far slower

than the convergence rate of Lasso-Granger. However,
Sparse-GEV inherits the variable selection advantages
of Lasso-Granger while allows a more flexible marginal
distribution for the observations. It is fully paramet-
ric, and together with proper `1 penalization can avoid
over-fitting while capturing non-linear dependencies.

4. Experiment Results

In order to evaluate the effectiveness of our algorithm,
we conduct experiments on four datasets, including
one synthetic dataset, one weather dataset and two
Twitter datasets. The experiment results are evalu-
ated on both how well we uncover the temporal de-
pendence graphs and how accurately we can predict
the future value of extreme events using the learned
temporal dependence.

4.1. Datasets

Synthetic Dataset We generate eight synthetic
datasets, each composed of nine time-series with dif-
ferent types of temporal dependence, one of which is
shown in Figure 1(a). Time series of length T = 40 are
generated in two steps: (i) A set of observations of the
location variables µ̃ is generated according to eq (4),
with the offset {ci} generated from N(0.2, 0.05), the
coefficients β set to have stationary time series, τ2 set
to 0.1 and the time lag L set to 2; (ii) The observations
x̃ are generated from a Gumbel distribution with the
corresponding location parameters µ̃ and scale param-
eter σi = 0.05 for all time series.

Climate Dataset The study of extreme value of wind
speed and gust speed is of great interest to the climate
scientists and wind power engineers. A collection of
wind observations is provided by AWS Convergence
Technologies, Inc. of Germantown, MD. It consists
of the observations of surface wind speed (mph) and
gust speed (mph) every five minutes. We choose 153
weather stations located on a grid laying in the 35N −
50N and 70W − 90W block. Following the traditions
in this domain, we generated extreme value time series
observations, i.e, daily maximum values, at different
weather stations. The objective is examine how the
wind speed (or gust speed) at different locations affects
each other and how well we can make predictions on
future wind speed.

Twitter Dataset In social media analysis, “buzz”
refers to those topics or memes that many people are
talking about at the same time with rapid growth and
impact. Buzz modeling and predictions are the funda-
mental problems in computational social science, but
they are extremely challenging since the distributions
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Figure 1. Illustration of (a) Ground truth and the inferred
temporal dependence graphs by (b) Granger causality, (c)
Transfer entropy, (d) Copula method, and (e) Sparse-GEV.

of these time series observations have heavy tails and
most existing models fail miserably. Given the defini-
tion of buzz, i.e., extremely high frequency of certain
words within a time interval, it is natural to model
them via extreme value theory. We collected two Twit-
ter datasets to evaluate the effectiveness of our model:
one is the most popular 20 meme phrases during a 28-
day interval from Nov-Dec 2009, and the other is pop-
ular hashtags around “occupy wall street” during a 21-
day interval in Oct-Nov 2011. Some example phrases
in the first dataset are “Haiti earthquake”, “Grammy
Awards”, “iPad release”, and “Scott Brown’s Sen-
ate Election”; some example hashtags in the second
dataset are #OWS, #OccupyLA, #OccupySF, #OccupyDC
and #OccupyBoston. For those phrases and hashtags,
we count the number of mentions in tweets within a
interval of one hour. We are interested in uncovering
how different buzzes affect each other and how well we
can make predictions on future buzz.

4.2. Performance Comparison

We compare the performance of our Sparse-GEV
model with three baselines, including Granger causal-
ity, transfer entropy, and the copula method (with
Gaussian copula), on two tasks: uncovering the un-
derlying dependency among time series, and predict-
ing the future values of time series. The first one re-
quires knowledge about the true dependency structure,
which is only available in the synthetic dataset. For
evaluation, we use the Area Under the Curve (AUC)
score, i.e., the probability that the algorithm will as-
sign a higher value to a randomly chosen positive (ex-
isting) edge than a randomly chosen negative (non-
existing) edge in the graph. In the prediction task,
we conduct experiments via the sliding window ap-
proach: given time series observations of length T and
a window size S, we train a model on observations
of xs, . . . , xT−S+s−1 and test it on the (T − S + s)th

sample, for s = 1, . . . , S. We set S to 10 for all the
datasets and use the root mean squared error (RMSE)
measure (averaged over S experiments and all nodes)
as the evaluation metric.

Table 1. Comparison of different models on recovering the
temporal dependence graph on eight synthetic datasets.

Algorithms Avg AUC Score

Sparse-GEV 0.9257
Granger 0.9046
Transfer Entropy 0.8701
Copula 0.8836

In the experiment, the regularization parameter λ is
set via cross-validation. All the observations are nor-
malized into interval [0, 1] prior the experiments.

Temporal Dependence Discovery Table 1 lists
the average accuracy of uncovering the underlying de-
pendence structures by different algorithms on the syn-
thetic data (consisting of 8 different datasets). As we
can see, our Sparse-GEV model significantly outper-
forms the baseline methods. Figure 1 shows an ex-
ample of the graphs learned by different algorithms:
our model can recover the ground-truth graph more
accurately than other methods.

Fig. 2 shows the inferred temporal dependencies from
the extreme value time series of wind speed and wind
gust speed by Sparse-GEV. Given the limited space,
we limit our discussion on the new york region. The
main observation is that the weather in the inland re-
gions are heavily influenced by the coastline region.
The wind gust graph (Fig. 2(b)) indicates two clus-
ters. One is at the top of the graph, starting from
Middletown to Danbury across Fishkill. The other one
is located at the bottom of the graph, which passes
through several cities, such as Stamford, Fairfield and
Brookhaven, around Long Island Sound, then goes to
inland cities in New Jersey through New York City.
The top cluster gives an example of wind gust path in
inland while the bottom one shows the coastal impact
of Long Island Sound and the impact extends to inland
New Jersey. Comparably, in addition to the Middle-

Pajek
(a) (b)

Figure 2. The temporal dependence graph learned by
Sparse-GEV on the extreme value time series of (a) Wind
in NY and (b) Gust in NY. Thicker edges imply stronger
dependency.
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Figure 3. The temporal dependency graph learned by
Sparse-GEV from the Twitter dataset on (a) Meme phrases
in 2009 and (b) “Occupy Wall Street” hastags in 2011.

town to Danbury inland cluster in wind gust graph,
the wind graph (Fig. 2(a)) shows another inland clus-
ter centered at Bridgewater, which has strong tempo-
ral dependencies with neighboring cities (confirmed by
the climatologists).

Fig. 3 shows the inferred temporal dependencies from
the extreme value time series of Twitter data on a sub-
set of buzz. From Fig. 3(a), we can see that the tempo-
ral dependence between different buzz are sparse (since
they are quite different topics); however, the buzz on
“Haiti Earthquake” generates a huge impact on the
whole Twitter universe and significantly changes the
future mentions of other popular meme phrases. An
interesting observation in Fig. 3(b) is that the hashtag
on the general theme #OWS has direct temporal depen-
dence with the city-specific hashtags, such as #O-LA

and #O-DC, while city-specific hashtags do not affect
each other.

Prediction Performance As discussed in Section
2, Sparse-GEV can also be used for predicting future
extreme events. For other baseline methods, we use
the approaches discussed in Section 3.1 for predic-
tions. Table 2 shows the prediction accuracy of differ-
ent algorithms on all datasets. As we can see, Sparse-
GEV outperforms all the other algorithms across all
datasets. This can be attributed to two properties of
Sparse-GEV: its flexibility in modeling complex distri-
butions and its effectiveness in utilizing the samples.
The assumptions of Lasso-Granger and copula meth-
ods about the distribution of the data can be respon-
sible for their lower performance. Transfer entropy re-

Table 2. Comparison of RMSE by different in the predic-
tion tasks. TE: transfer entropy; T-: Twitter dataset.

Synth.Wind Gust T-MemeT-OWS
Sparse-GEV .2644.0660.0927 .0503 .1190
Granger .2923 .0695 .0943 .0619 .1410
TE .3135 .0692 .0983 .0972 .1302
Copula .2987 .0678 .0934 .1009 .1240
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Figure 4. (a) Parameter Sensitivity Assessment: Average
AUC achieved by Sparse-GEV on the synthetic datasets
when the value of λ varies. (b) The value of log-likelihood
function at each iteration of the EM algorithm. (c) The
effect of τ on the value of hidden variables in the Sparse-
GEV algorithm.

quires many observations to perform well, which could
be a potential issue in the real applications.

4.3. Parameter Sensitivity Assessment

Like other latent state models, Sparse-GEV model has
many parameters, which could affect its performance
significantly. In our last experiment, we assess the pa-
rameter sensitivity. Fig. 4(a) shows that in a large
range of values for the regularization parameter λ, the
graph learning accuracy remains unchanged and little
effort in selection of the regularization parameter leads
to the optimal performance. Fig. 4(b) suggests that in
less than 10 EM iterations, our algorithm converges to
the optimal point. Fig. 4(c) illustrates the effect of τ
on the performance of Sparse-GEV. Small values of τ
result in smoother estimation of E[µ|X], while higher
values lead to sensitive estimation (as a result E[µ|X]
closely follows the observation time series). This ob-
servation suggests that we should monitor the sam-
ple mean of the latent variables and choose a value of
τ that allows smooth latent variables to capture the
trend of observations.

5. Conclusion

In this paper, we propose sparse-GEV, a sparse la-
tent space model, to uncover the sparse temporal de-
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pendency from multivariate extreme value time series.
To estimate the parameters of the model, we develop
an iterative searching algorithm based on the general-
ized EM-algorithm and sampling with particle filter-
ing. Through extensive experiments, we demonstrate
that Sparse-GEV outperforms the state-of-the-art al-
gorithms such as copula and transfer entropy. For fu-
ture work, we are interested in the theoretical analysis
on the consistency of the Sparse-GEV model.
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