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Abstract

We study a simple two step procedure for es-
timating sparse precision matrices from data
with missing values, which is tractable in
high-dimensions and does not require impu-
tation of the missing values. We provide rates
of convergence for this estimator in the spec-
tral norm, Frobenius norm and element-wise
`∞ norm. Simulation studies show that this
estimator compares favorably with the EM
algorithm. Our results have important prac-
tical consequences as they show that stan-
dard tools for estimating sparse precision ma-
trices can be used when data contains miss-
ing values, without resorting to the iterative
EM algorithm that can be slow to converge
in practice for large problems.

1. Introduction

Covariance matrices and their inverses, precision ma-
trices, arise in a number of applications including prin-
cipal component analysis, classification by linear and
quadratic discriminant analysis, and the identification
of conditional independence assumptions in the con-
text of Gaussian graphical models. As a result, obtain-
ing good estimators of covariance and precision matri-
ces under various contexts is of essential importance in
statistics and machine learning research. In the con-
text of Gaussian Markov Random Fields (MRFs), the
graph structure encodes certain conditional indepen-
dence assumptions; if variables corresponding to nodes
a and b are conditionally independent given the re-
maining variables, then there is no edge between nodes
a and b. As a precision matrix parametrizes a Gaus-
sian MRF and a zero element in the precision ma-
trix implies that two variables are conditionally inde-
pendent, the problem of estimating precision matrices
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commonly arises in the context of learning the struc-
ture and parameters of Gaussian MRFs. The availabil-
ity of high-dimensional data, where the sample size n
can be small relative to the dimension p, has pushed
the focus of research towards methods for estimating
sparse precision matrices under proper regularizations.
See, for example, Meinshausen & Bühlmann (2006),
Peng et al. (2009), Cai et al. (2010), Ravikumar et al.
(2008), Rothman et al. (2008), and Yuan & Lin (2007).
Many theoretical results have been obtained for the
high-dimensional problems, including consistency and
rate of convergence results under a variety of assump-
tions, as well as efficient algorithms to numerically find
estimates. However, all of the above approaches have
been devised to deal with the case where all data are
fully observed.

In practice, we often have to analyze data that contains
missing values (Little & Rubin, 1987). Missing values
may occur due to a number of reasons, for example,
faulty machinery that collects data, subjects not be-
ing available in subsequent experiments (longitudinal
studies), limits from experimental design, etc. When
missing values are present, they are usually imputed to
obtain a complete data set on which standard methods
can be applied. However, methods that directly per-
form statistical inference, without imputing missing
values, are preferred. A systematic approach to miss-
ing values problem is based on likelihoods of observed
values. However, with an arbitrary pattern of miss-
ing values, no explicit maximization of the likelihood
is possible even for the mean values and covariance
matrices (Little & Rubin, 1987). Expectation maxi-
mization algorithms, which are iterative methods, are
commonly used in cases where explicit maximization
of the likelihood is not possible; however, providing
theoretical guarantees for such procedures is difficult.
This approach was employed in Städler & Bühlmann
(2009) to estimate sparse inverse covariance matrices,
which we will review in the following section. In re-
cent work, Lounici (2012) deals with the estimation
of covariance matrices from data with missing values
under the assumption that the true covariance matrix
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is approximately low rank. Loh & Wainwright (2011)
recently studied high-dimensional regression problems
when data contains missing values. Casting the esti-
mation of a precision matrix as a sequence of regres-
sion problems, they obtain an estimator of the pre-
cision matrix without maximizing partially observed
likelihood function using an EM algorithm.

In this work, we present a simple, principled method
that directly estimates a large dimensional precision
matrix from data with missing values. We form an un-
biased estimator of the covariance matrix from avail-
able data, which is then plugged into the penalized
maximum likelihood objective for a multivariate Nor-
mal distribution to obtain a sparse estimator of the
precision matrix. Even though the initial estimator
of the covariance matrix is not necessarily positive-
definite, we can show that the final estimator of the
precision matrix is positive definite. Furthermore, un-
like the EM algorithm, which is only guaranteed to
converge to a local maximum, we prove consistency
and convergence rate for our estimator in the Frobe-
nius norm, spectral norm and `∞ norm. Our results
have important practical consequences as they allow
practitioners to use existing tools for penalized covari-
ance selection (see, e.g., Friedman et al., 2008), which
are very efficient in high-dimensions for data sets with
missing values without changing the algorithm or re-
sorting to the iterative EM algorithm.

Throughout the paper we assume that the missing
values are missing at random in the sense of Rubin
(1976). Let X = (xij) ∈ Rn×p be a matrix of ob-
servations with samples organized into rows, and let
R = (rij) ∈ Rn×p be a matrix of indicators of ob-
served values, that is, rij = 1 if the value xij was
observed and rij = 0 otherwise. We assume that
the data is missing completely at random (MCAR),
which means that P[R|X, ϕ] = P[R|ϕ] for all X and
ϕ, where ϕ denotes unknown parameters. The MCAR
assumption implies that the missingness does not de-
pend on the observed values, e.g., in a distributed en-
vironment, each sensor may fail independently from
other sensors. This assumption is relaxed in the ex-
perimental section where we test the robustness of our
procedure when the missing data mechanism departs
from the MCAR assumption. Another more realistic
assumption is called missing at random (MAR), which
assumes P[R|X, ϕ] = P [R|Xobs, ϕ] for all Xmis and
ϕ, where Xobs denotes the observed components of X
and Xmis denotes the missing components. The MAR
assumes that the distribution of R depends on the ob-
served values of X, but not on the missing values, e.g.,
cholesterol level may be measured only if patient has
high blood pressure. Finally, the missing data mech-

anism is called not-missing at random (NMAR) if the
distribution of R depends on the non-observed values
of X. Estimation under NMAR is a hard problem, as
one needs to make assumptions on the model for miss-
ing values. The method presented in this paper can,
in theory, be extended to handle the MAR case.

2. Problem setup and the EM
algorithm

Let {xi}ni=1 be an i.i.d. sample from the multivariate
Normal distribution with the mean µ ∈ Rp and the
covariance matrix Σ ∈ Rp×p. Let R ∈ Rn×p be a
matrix of missing values indicators with rij = 1 if xij
is observed and 0 otherwise. The goal is to estimate
the sparse precision matrix Ω = Σ−1 from the data
with missing values.

Estimating covariance matrices from data with missing
values is quite an old problem. See, for example, Afifi
& Elashoff (1966), Wilks (1932), Anderson (1957),
Hocking & Smith (1968), and Hartley & Hocking
(1971). However, literature on high-dimensional es-
timation of covariance matrices from incomplete data
is missing. Recently Städler & Bühlmann (2009) pro-
posed to use an EM algorithm, called MissGlasso, to
estimate sparse precision matrices, which we review
below.

Yuan & Lin (2007) proposed to estimate the sparse
precision matrix by solving the following `1-norm pe-
nalized maximization problem

Ω̂ = arg max
Ω�0

{log |Ω| − tr ΩŜ− λ||Ω−||1}, (1)

where Ŝ is the empirical covariance matrix, Ω− :=
Ω − diag(Ω) and ||A||1 =

∑
ij |Aij |. The tuning pa-

rameter λ > 0 controls the sparsity of the solution
and hence the complexity of the solution. The opti-
mization problem in (1) can be solved efficiently using
a number of procedures (e.g., Friedman et al., 2008;
Hsieh et al., 2011).

When the data are fully observed, Yuan & Lin (2007)
arrived at the optimization procedure in (1) from the

penalized maximum likelihood approach, with Ŝ =
n−1

∑n
i=1(xi − x̄)(xi − x̄)′. In the case when data

contains missing values, the log-likelihood of observed
data takes the following form

`(µ,Ω; {xi,obs}i) = −1

2

n∑
i=1

(
log |(Ω−1)i,obs|

+ (xi,obs − µi,obs)
′((Ω−1)i,obs)

−1(xi,obs − µi,obs)
)
,

where for a sample point xi we write xi =
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(xi,obs,xi,mis) to denote observed and missing compo-
nents, and µi,obs and Ωi,obs are the mean and precision
matrix of the observed components of xi. MissGlasso
is an EM algorithm that finds a local maximum (µ̂, Ω̂)
of the `1 penalized observed log-likelihood. In the E-
step, MissGLasso imputes the missing values by condi-
tional means of the distribution. That is, imputation
is done by x̂i,mis = µ̂mis−(Ω̂mis,mis)

−1Ω̂mis,obs(xi,obs−
µobs), where µ̂ and Ω̂ are the current estimates of the
parameters. In the M-step, the optimization problem
(1) is solved using the GLasso on data with imputed
missing values. The procedure iterates between the
E-step and the M-step until convergence to a local op-
timum of the penalized observed log-likelihood. We
will denote Ω̂EM, the final estimator of the precision
matrix obtained by the EM algorithm. As the objec-
tive is non-convex, it is difficult to establish theoretical
guarantees on the solution produced by the EM. Next,
we present our estimator.

3. Plug-in estimator and related
procedures

In this section, we propose a simple procedure based
on the plug-in estimator of the covariance matrix from
available data that can be used together with existing
procedures for estimating precision matrices from fully
observed data. Specifically, we will use the penalized
likelihood approach, which was introduced in the pre-
vious section in (1). From (1) it is obvious that we
only need a sample estimate of the covariance matrix,
which is plugged into a convex program that produces
an estimate of the precision matrix.

We form a sample covariance matrix from the available
samples containing missing values as follows. Let Ŝ =
[σ̂ab]ab be the sample covariance matrix with elements

σ̂ab =

∑n
i=1 riarib(xia − µ̂a)(xib − µ̂b)∑n

i=1 riarib
(2)

where µ̂ = (µ̂a) is the sample mean defined as µ̂a =
(
∑n
i=1 ria)−1

∑n
i=1 riaxia. Observe that the missing

values in X are taken into account naturally and that
the mean and covariance elements are estimated only
from the observed sample. Under the MCAR assump-
tion, it is simple to show that Ŝ is an unbiased estima-
tor of Σ, that is, E[Ŝ] = Σ.

Our estimator is formed by plugging Ŝ into the objec-
tive in (1), which we will denote as Ω̂mGLasso. Note

that Ŝ is not necessarily a positive definite matrix,
however, the minimization problem in (1) is still con-

vex and the resulting estimator Ω̂mGLasso will be posi-
tive definite and unique. In the next section, we lever-

age the analysis of Ravikumar et al. (2008) to establish
a number of good statistical properties of the estima-
tor Ω̂mGLasso.

3.1. Selecting tuning parameters

The procedure described in the previous section re-
quires selection of the tuning parameters λ, which con-
trols the sparsity of the solution and balances it to the
fit to data. A common approach is to form a grid
of candidate values for the tuning parameter λ and
choose one that minimizes a modified BIC criterion

BIC(λ) = −2`(µ̂, Ω̂; {xi,obs}i)+log(n)
∑
a≤b

1I{ω̂ab 6= 0}.

Here (µ̂, Ω̂) are estimates obtained using the tun-

ing parameter λ and `(µ̂, Ω̂; {xi,obs}i) is the observed
log-likelihood. Yuan & Lin (2007) proposed to use∑
a≤b 1I{ω̂ab 6= 0} to measure the degrees of freedom.

Performing cross-validation is another possibility for
finding the optimal parameter λ. In the V-fold cross-
validation, samples are divided into V disjoint folds,
say Dv for v = 1, . . . , V , and the score is computed as

CV(λ) =

V∑
v=1

∑
i∈Dv

log |(Ω̂−1v )i,obs|+ (xi,obs − (µ̂v)i,obs)
′

× ((Ω̂−1v )i,obs)
−1(xi,obs − (µ̂v)i,obs),

where (µ̂v, Ω̂v) denote estimates obtained from the

sample {xi}ni=1\Dv. The optimal tuning parameter λ̂
is the one that minimizes CV(λ). The final estimates

(µ̂, Ω̂) are constructed using the optimization proce-

dure with the tuning parameter λ̂ on all the data.

3.2. Related procedures

Lounici (2012) and Loh & Wainwright (2011) have
recently proposed procedures for estimating approxi-
mately low-rank covariance matrices and sparse pre-
cision matrices, respectively, from high-dimensional
data with missing values. In both works, a sample
covariance estimator is formed, which is then plugged
into an optimization procedure. The sample covari-

ance estimator they consider, assuming (ria)ia
iid∼

Bern(γ) with γ ∈ (0, 1] known, is defined as

Σ̃ = (γ−1 − γ−2)diag(Σ̌) + γ−2Σ̌

where Σ̌ = [σ̌ab]ab and σ̌ab = n−1
∑n
i=1 riaribxiaxib.

The estimator Σ̃ is an unbiased estimator of the co-
variance matrix, however, it requires knowledge of the
parameter γ.



Estimating Sparse Precision Matrices From Data With Missing Values

Procedure of Lounici (2012) is focused on estimating
a covariance matrix under the assumption that the
true covariance matrix is approximately low rank and
hence is not comparable to our procedure. Loh &
Wainwright (2011) used a projected gradient descent
method to obtain a solution to a high-dimensional re-
gression problem when data contains missing values.
A sparse precision matrix can be obtained by max-
imizing an `1 penalized pseudo-likelihood, which re-
duces to a sequence of regression problems. We note
that the estimator Ω̂mGLasso can be obtained using any
convex program solver that can solve (1), while the re-
sults of Loh & Wainwright (2011) rely on the usage of
projected gradient descent.

4. Theoretical results

In this section, we provide theoretical analysis of the
estimates Ω̂mGLasso, which we denote Ω̂ throughout
the section for notational simplicity, under the MCAR
assumption. We start by analyzing the sample covari-
ance matrix Ŝ in (2). We will assume that each element
of the missing values indicator matrix R is indepen-
dently distributed as ria ∼ Bern(γ), i = 1, . . . , n, a =
1, . . . , p. Furthermore, we assume that a distribution
of X has sub-Gaussian tails, that is, there exists a con-
stant σ ∈ (0,∞) such that

E[exp(t(Xia − µa))] ≤ exp(σ2t2), for all t ∈ R.

A multivariate Gaussian distribution satisfies this con-
dition. We define the function f(n, γ, δ), which will be
useful for characterizing probabilistic deviation of dif-
ferent quantities, as

f(n, γ, δ) = (nγ2 −
√

2nγ2 log(2/δ))−1 log(8/δ).

Our first result characterizes the deviation of the sam-
ple covariance matrix from the true covariance matrix.

Lemma 1. Assume that Xa/
√

Σaa is sub-Gaussian
with parameter σ2. Fix δ > 0 and assume that n is big
enough so that f(n, γ, δ) ≤ 1/2. Then for any fixed
(a, b) ∈ {1, . . . , p}2, a 6= b, with probability at least
1− δ, we have that |σ̂ab − σab| ≤ Cσ

√
f(n, γ, δ) where

Cσ = 16
√

2(1 + 4σ2) maxa σaa.

Similarly, we can obtain that for any diagonal elements
of Ŝ the statement |σ̂aa−σaa| ≤ Cσ

√
f(n,

√
γ, δ) holds

with probability 1− δ.
We use Lemma 1 to prove properties of the estimate
Ω̂mGLasso. We start by introducing some additional
notation and assumptions. Following Ravikumar et al.
(2008), we introduce the irrepresentable condition:

|||ΓSCS(ΓSS)−1|||∞ ≤ 1− α, α ∈ (0, 1] (3)

where Γ = Ω ⊗ Ω, S := {(a, b) : ωab 6= 0} is sup-
port of Ω and SC := {(a, b) : ωab = 0}, and ||| · |||∞
is the `∞/`∞-operator norm. Furthermore, we define
KΣ := |||Σ|||∞ and KΓ := |||(ΓSS)−1|||∞. The maxi-
mum number of non-zero elements in a row of Ω is
denoted d := maxa=1,...,p |{b : ωab 6= 0}|. The rate of
convergence will depend on these quantities.

Theorem 2. Suppose that the distribution of X sat-
isfies the irrepresentable condition in (3) with param-
eter α ∈ (0, 1] and that the missing values indicator
matrix R has i.i.d. Bern(γ) elements, that is, the data
is missing completely at random with probability 1−γ.
Furthermore, assume that the conditions of Lemma 1
hold. Let Ω̂ be the unique solution for the regular-
ization parameter λ = 8

αCσ
√
f(n, γ, p−τ ) with some

τ > 2 and Cσ = 16
√

2(1 + 4σ2) maxa σaa. If the sam-
ple size satisfies

n >
2(C2

1 (1 + 8α−1)2d2 + C1(1 + 8α−1)d) log 8pτ

γ2

where C1 = 6Cσ max{KΣKΓ,K
3
ΣK

2
Γ} then with prob-

ability at least 1− p2−τ

max
a,b
|ω̂ab − ωab| ≤ 2(1 + 8α−1)KΓCσ

√
f(n, γ, p−τ ),

where Ω̂ = [ω̂ab]ab and Ω = [ωab]ab.

The result follows from application of Theorem 1 in
Ravikumar et al. (2008) to the tail bound in Lemma 1
and some algebra. A simple consequence of Theorem 2
is that the support Ŝ of Ω̂ consistently estimates the
support S of Ω if all the elements of Ω are large enough
in absolute values.

Corollary 3. Under the same assumptions as in The-
orem 2, we have that P[Ŝ = S] ≥ 1 − p2−τ if
minab |ωab| ≥ 2(1 + 8α−1)KΓCσ

√
f(n, γ, p−τ ).

Proof follows by straightforward algebra from Theo-
rem 2. Using the element-wise `∞ bound on deviation
of Ω̂ from Ω established in Theorem 2, we can simply
establish the bounds on the convergence in the Frobe-
nius and spectral norms.

Corollary 4. Under the same assumptions as in The-
orem 2, we have that with probability at least 1−p2−τ ,

||Ω̂−Ω||F ≤ K
√
|S|f(n, γ, p−τ ), and

|||Ω̂−Ω|||2 ≤ K min{
√
|S|, d}

√
f(n, γ, p−τ )

where K = 2(1 + 8α−1)KΓCσ.

Proof follows by straightforward algebra from Theo-
rem 2. We can compare the established results for Ω̂
under the MCAR assumption to results of Ravikumar
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Figure 1. Hamming distance between the support of Ω̂ and
Ω averaged over 100 runs. Vertical line marks a threshold
at which the graph structure is consistently estimated.

et al. (2008) for the fully observed case. We observe
that the sample size increases by a factor of O(γ−2),
while the rate of convergence in the element-wise `∞
norm is slower by a factor of O(γ−1). The parameter
γ which controls the rate of missing data is commonly
considered a constant, however, it is clear from Theo-
rem 2 that we could let γ → 0 slowly as a function of
n and p, while maintaining the convergence properties
of the procedure.

5. Simulation Analysis

In this section, we perform a set of simulation studies
to illustrate finite sample performance of our proce-
dure. First, we show that the scalings predicted by
the theory are sharp. Next, we compare our proce-
dure to the EM algorithm, MissGLasso (Städler &
Bühlmann, 2009) and the projected gradient method
(Loh & Wainwright, 2011), PGLasso. Furthermore, we
can explore robustness of our method when the data
generating process departs from the one assumed in
Section 4.

5.1. Verifying theoretical scalings

Theoretical results given in Section 4 predict behav-
ior of the error when estimating the precision ma-
trix. In particular, Corollary 3 suggests that we need
O(d2 log(p)) samples to estimate the graph structure
consistently and Corollary 4 states that the error in the
operator norm decreases as O(d

√
log(p)/n). There-

fore, if we plot the error curves against appropriately
rescaled sample size, we expect them to align for dif-
ferent problem sizes. To verify this, we create a chain-
structured Gaussian graphical model (following Loh &
Wainwright (2011)), so that d = 2 and the precision
matrix Ω is created as follows. Each diagonal element
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Figure 2. Operator norm error averaged over 100 runs. We
observe that the error curve align when plotted against the
rescaled sample size.

is set to 1, and all the entries corresponding to the
chain are set equal to 0.1. The precision matrix is
rescaled so that |||Ω|||2 = 1 and γ = 0.8.

Figure 1 shows the hamming distance between the sup-
port of Ω̂ and Ω plotted against the rescaled sample
size. Vertical line marks a threshold in scaled sample
size after which the pattern of non-zero element of the
precision matrix is consistently recovered. Figure 2
shows that the error curves align when the sample size
is rescaled, as predicted by the theory.

5.2. Data missing completely at random

Our first simulation explores the MCAR assumption.
We use models from Städler & Bühlmann (2009):

Model 1: σab = 0.7|a−b|, so that the elements of the
covariance matrix decay exponentially.

Model 2:

σab = 1I{a=b}+0.4 1I{|a−b|=1}+0.2 1I{|a−b|=2}
+0.2 1I{|a−b|=3}+0.1 1I{|a−b|=4},

where the symbol 1I represents the indicator function
which is 1 if a = b and 0 otherwise.

Model 3: Ω = B + δI, where each off-diagonal entry
of B is generated independently and equals 0.5 with
probability α = 0.1 or 0 with probability 1− α. Diag-
onal entries of B are zero, and δ is chosen so that the
condition number of Ω is p.

We report convergence results in the operator norm.
We also report precision and recall for the perfor-
mance on recovering the sparsity structure of Ω, where

precision = |Ŝ∩S|
|Ŝ| and recall = |Ŝ∩S|

|S| . As described in

Section 3.1, the tuning parameter λ is selected by min-
imizing the BIC criterion. We observed that using the
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Recall Precision

MissGLasso mGLasso PGLasso MissGLasso mGLasso PGLasso

M
o
d
e
l
1

p
=
1
0
0 0% NA 1.000(0.000) 1.000(0.000) NA 0.973(0.045) 0.991(0.015)

10% 1.000(0.000) 1.000(0.000) 0.998(0.008) 0.608(0.068) 0.915(0.059) 0.998(0.010)
20% 0.999(0.004) 1.000(0.003) 0.967(0.006) 0.636(0.081) 0.897(0.073) 0.999(0.003)
30% 0.977(0.062) 0.989(0.003) 0.759(0.140) 0.642(0.064) 0.836(0.057) 0.998(0.009)

p
=
2
0
0 0% NA 1.000(0.000) 0.891(0.005) NA 0.950(0.046) 0.999(0.004)

10% 0.860(0.022) 0.950(0.006) 0.782(0.024) 0.858(0.043) 0.803(0.046) 0.984(0.027)
20% 0.833(0.053) 0.930(0.001) 0.556(0.006) 0.763(0.048) 0.734(0.062) 0.952(0.091)
30% 0.794(0.138) 0.923(0.003) 0.553(0.009) 0.729(0.059) 0.731(0.060) 0.941(0.052)

p
=
5
0
0 0% NA 1.000(0.001) 0.889(0.015) NA 0.912(0.022) 0.995(0.003)

10% 0.931(0.011) 0.933(0.031) 0.855(0.023) 0.834(0.029) 0.862(0.044) 0.966(0.010)
20% 0.852(0.064) 0.920(0.024) 0.767(0.026) 0.811(0.037) 0.841(0.037) 0.965(0.025)
30% 0.808(0.045) 0.887(0.028) 0.526(0.031) 0.739(0.043) 0.781(0.030) 0.963(0.033)

M
o
d
e
l
2

p
=
1
0
0 0% NA 0.330(0.008) 0.403(0.006) NA 0.420(0.012) 0.297(0.012)

10% 0.278(0.019) 0.280(0.011) 0.380(0.007) 0.342(0.012) 0.375(0.010) 0.319(0.008)
20% 0.240(0.022) 0.253(0.018) 0.259(0.012) 0.339(0.028) 0.372(0.027) 0.320(0.026)
30% 0.231(0.031) 0.241(0.027) 0.174(0.030) 0.267(0.033) 0.281(0.037) 0.331(0.042)

p
=
2
0
0 0% NA 0.281(0.011) 0.410(0.013) NA 0.570(0.012) 0.270(0.021)

10% 0.331(0.011) 0.261(0.010) 0.361(0.011) 0.354(0.013) 0.471(0.015) 0.257(0.018)
20% 0.261(0.012) 0.243(0.015) 0.283(0.013) 0.274(0.018) 0.354(0.021) 0.313(0.021)
30% 0.218(0.017) 0.232(0.017) 0.208(0.017) 0.281(0.019) 0.267(0.031) 0.453(0.059)

p
=
5
0
0 0% NA 0.309(0.006) 0.302(0.012) NA 0.510(0.007) 0.540(0.018)

10% 0.305(0.007) 0.307(0.005) 0.357(0.009) 0.461(0.008) 0.462(0.010) 0.224(0.012)
20% 0.297(0.010) 0.315(0.027) 0.243(0.015) 0.272(0.026) 0.223(0.048) 0.383(0.019)
30% 0.238(0.025) 0.242(0.023) 0.203(0.028) 0.267(0.031) 0.259(0.033) 0.396(0.021)

M
o
d
e
l
3

p
=
1
0
0 0% NA 0.943(0.002) 0.971(0.015) NA 0.532(0.017) 0.251(0.051)

10% 0.857(0.010) 0.857(0.003) 0.994(0.005) 0.857(0.009) 0.882(0.004) 0.200(0.006)
20% 0.829(0.017) 0.857(0.012) 0.886(0.035) 0.691(0.022) 0.588(0.015) 0.307(0.059)
30% 0.771(0.053) 0.829(0.033) 0.595(0.096) 0.780(0.050) 0.671(0.050) 0.797(0.053)

p
=
2
0
0 0% NA 0.783(0.005) 1.000(0.003) NA 0.921(0.002) 0.245(0.023)

10% 0.747(0.005) 0.733(0.006) 0.998(0.007) 0.887(0.009) 0.921(0.004) 0.233(0.030)
20% 0.667(0.009) 0.747(0.030) 0.931(0.014) 0.909(0.015) 0.737(0.031) 0.311(0.023)
30% 0.480(0.037) 0.600(0.052) 0.801(0.045) 0.837(0.059) 0.804(0.033) 0.412(0.035)

p
=
5
0
0 0% NA 0.744(0.005) 0.998(0.002) NA 0.844(0.003) 0.191(0.019)

10% 0.627(0.006) 0.718(0.006) 0.994(0.003) 0.893(0.003) 0.835(0.005) 0.180(0.020)
20% 0.601(0.010) 0.699(0.031) 0.923(0.029) 0.887(0.034) 0.789(0.037) 0.259(0.054)
30% 0.511(0.039) 0.614(0.038) 0.851(0.041) 0.800(0.043) 0.755(0.027) 0.355(0.047)

Table 1. Average (standard deviation) recall and precision under the MCAR assumption.

tuning parameters that minimize the cross-validation
loss result in complex estimates with many falsely se-
lected edges (results not reported).

We set the sample size and number of dimen-
sions (n, p) = (100, 100), (150, 200), (200, 500) for each
model and report results averaged over 50 independent
runs for each setting. For each generated data set, we
remove completely at random 10%, 20% and 30% en-
tries. Results on recall and precision for different de-
grees of missingness are reported in Table 1, while the
operator norm convergence results are reported in Ta-
ble 2. From the simulations, we observe that mGLasso
performs better than the EM algorithm on the task of
recovering the sparsity pattern of the precision matrix.
PGLasso does well on Model 1, but does not perform
so well under Model 2 and 3. Model 2 is a difficult
one for recovering non-zero patterns, as the true pre-
cision matrix contains many small non-zero elements.
The EM algorithm performs better than mGLasso and
PGLasso measured by |||Ω̂−Ω|||2, with mGLasso doing
better than PGLasso. However, on average the EM al-
gorithm requires 20 iterations for convergence, which

makes mGLasso about 20 times faster on average.

5.3. Data missing at random

In the previous section, we have simulated data with
missing values completely at random, under which
consistency of the estimator Ω̂mGLasso given in Sec-
tion 3 can be proven. When the missing values are pro-
duced at random (MAR), the EM algorithm described

is still valid, however, the estimator Ω̂mGLasso is not.
Little (1988) provided a statistical test for checking
whether missing values are missing completely at ran-
dom, however, no such tests exist for high-dimensional
data. In this section, we will observe how robust our
estimator is when the data generating mechanism de-
parts from the MCAR assumption. When the missing
data mechanism is NMAR, then neither the EM al-
gorithm, nor the procedures described Section 3 are
valid.

We will use the model considered in Städler &
Bühlmann (2009) in Section 4.1.2. The model is a
Gaussian with p = 30, n = 100 and the covariance
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MissGLasso mGLasso PGLasso

Model 1
p
=
1
0
0 0% NA 2.10(0.01) 4.35(0.01)

10% 2.25(0.01) 2.31(0.01) 4.69(0.01)
20% 2.35(0.04) 2.42(0.03) 4.78(0.04)
30% 2.69(0.05) 2.85(0.04) 4.82(0.06)

p
=
2
0
0 0% NA 2.26(0.01) 4.49(0.01)

10% 2.32(0.01) 2.73(0.01) 4.76(0.02)
20% 2.51(0.01) 2.88(0.01) 4.86(0.02)
30% 2.96(0.02) 3.04(0.01) 4.98(0.05)

p
=
5
0
0 0% NA 3.59(0.03) 4.94(0.03)

10% 3.71(0.02) 3.85(0.02) 5.25(0.04)
20% 3.99(0.03) 3.99(0.02) 5.32(0.04)
30% 4.11(0.05) 4.77(0.04) 5.76(0.05)

Model 2

p
=
1
0
0 0% NA 1.25(0.01) 1.63(0.01)

10% 1.32(0.01) 1.66(0.01) 1.75(0.01)
20% 1.59(0.01) 1.75(0.01) 1.88(0.02)
30% 1.66(0.02) 1.86(0.01) 1.99(0.02)

p
=
2
0
0 0% NA 1.31(0.01) 1.69(0.01)

10% 1.41(0.01) 1.71(0.01) 1.71(0.01)
20% 1.61(0.01) 1.79(0.02) 1.99(0.01)
30% 1.69(0.01) 1.87(0.01) 2.08(0.01)

p
=
5
0
0 0% NA 1.44(0.01) 1.73(0.01)

10% 1.49(0.01) 1.74(0.01) 1.84(0.02)
20% 1.66(0.01) 1.81(0.02) 2.05(0.03)
30% 1.72(0.02) 1.95(0.02) 2.22(0.04)

Model 3

p
=
1
0
0 0% NA 1.12(0.01) 1.35(0.01)

10% 1.16(0.01) 1.32(0.01) 1.42(0.02)
20% 1.20(0.01) 1.64(0.02) 1.70(0.03)
30% 1.49(0.05) 1.67(0.03) 1.83(0.03)

p
=
2
0
0 0% NA 1.35(0.01) 1.59(0.01)

10% 1.43(0.01) 1.62(0.01) 1.83(0.01)
20% 1.46(0.03) 1.71(0.02) 1.87(0.01)
30% 1.52(0.03) 1.82(0.01) 1.93(0.03)

p
=
5
0
0 0% NA 1.42(0.01) 1.64(0.02)

10% 1.47(0.01) 1.69(0.02) 1.86(0.01)
20% 1.55(0.02) 1.73(0.04) 1.92(0.03)
30% 1.59(0.02) 1.87(0.03) 2.01(0.03)

Table 2. Average (standard deviation) distance in the op-
erator norm |||Ω− Ω̂|||2 under the MCAR assumption.

matrix is block-diagonal, Σ = diag(B,B, . . . ,B) with
B ∈ R3×3, bab = 0.7|a−b|. Missing values are created
using the following three mechanisms:

1. For all j = 1, . . . , bp/3c and i = 1, . . . , n: xi,3∗j is

missing if ri,j = 0 where ri,j
iid∼ Bern(π).

2. For all j = 1, . . . , bp/3c and i = 1, . . . , n: xi,3∗j is
missing if xi,3∗j−2 < T .

3. For all j = 1, . . . , bp/3c and i = 1, . . . , n: xi,3∗j is
missing if xi,3∗j < T .

The threshold value T determines the percentage of
missing values. We consider three settings: 1) π = 0.25
and T = Φ−1(0.25), 2) π = 0.5 and T = Φ−1(0.5). and
3) π = 0.75 and T = Φ−1(0.75) where Φ(·) is the stan-
dard Normal cumulative distribution function. The
first missing data mechanism is MCAR as the miss-
ing values do not depend on the observed values. The
second missing data mechanism is MAR as the miss-
ing value indicators depend on the observed values of

MissGLasso mGLasso PGLasso

π = 0.25 MCAR 2.88(0.02) 3.16(0.01) 3.72(0.01)
MAR 3.24(0.01) 3.92(0.03) 4.15(0.05)
NMAR 5.78(0.05) 6.57(0.08) 7.64(0.10)

π = 0.5 MCAR 2.97(0.03) 3.28(0.02) 3.77(0.02)
MAR 3.41(0.05) 4.16(0.06) 4.58(0.04)
NMAR 6.15(0.07) 6.61(0.10) 8.12(0.12)

π = 0.75 MCAR 3.17(0.02) 3.31(0.03) 3.99(0.03)
MAR 3.59(0.05) 4.47(0.04) 4.87(0.05)
NMAR 6.87(0.11) 7.04(0.13) 8.76(0.15)

Table 3. Average (standard deviation) distance in the op-
erator norm |||Ω − Ω̂|||2 when missing values mechanism is
MCAR, MAR and NMAR. The fraction of the observed
data is controlled by π.

other variables. Finally, the third missing data mech-
anism is NMAR as the missing data indicators depend
on the unobserved values.

Results of the simulation, averaged over 50 indepen-
dent runs, are summarized in Table 3 and Table 4.
We first observe that when the missing values are not
missing at random, performance of all procedures de-
grades. Furthermore, the EM algorithm performs bet-
ter than the other two methods when the data is gen-
erated under MAR. This is expected, since our pro-
posed procedure is not valid under this assumption.
Note, however, that mGLasso performs better than
PGLasso under this simulation scenario.

6. Discussion and extensions

We have proposed a simple estimator for the precision
matrix in high-dimensions from data with missing val-
ues. The estimator is based on a convex program that
can be solved efficiently. In particular, from our simu-
lation studies, we observed that the algorithm runs on
average 20 times faster than the EM algorithm. Fur-
thermore, the estimator does not require imputation
of the missing values and can be found using exist-
ing numerical procedures. As such, we believe that
it represents a viable alternative to the iterative EM
algorithm.

From the analysis in Section 4, it is clear that other
procedures for estimating precision matrices from fully
observed data, such as the Clime estimator (Cai et al.,
2011), could be easily extended to handle data with
missing values. Theoretical properties of those proce-
dures would be established using the tail bounds on
the sample covariance matrix given in Lemma 1.

There are two directions in which this work should be
extended. First, the MCAR assumption is very strong
and it is hard to check whether it holds in practice.
However, we have observed in our simulation studies
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Recall Precision

MissGLasso mGLasso PGLasso MissGLasso mGLasso PGLasso

π = 0.25 MCAR 0.900(0.003) 0.950(0.005) 1.000(0.000) 0.900(0.002) 0.861(0.006) 0.333(0.030)
MAR 0.512(0.026) 0.815(0.070) 0.501(0.067) 0.995(0.006) 0.471(0.052) 0.634(0.025)
NMAR 0.500(0.015) 0.443(0.052) 0.465(0.112) 0.698(0.086) 0.188(0.021) 0.213(0.091)

π = 0.5 MCAR 0.800(0.005) 0.900(0.003) 1.000(0.000) 0.889(0.008) 0.774(0.068) 0.263(0.050)
MAR 0.650(0.034) 0.900(0.005) 0.551(0.061) 0.921(0.021) 0.393(0.089) 0.453(0.072)
NMAR 0.531(0.042) 0.613(0.477) 0.463(0.073) 0.684(0.092) 0.370(0.285) 0.315(0.109)

π = 0.75 MCAR 0.626(0.062) 0.635(0.220) 0.775(0.081) 0.924(0.053) 0.891(0.063) 0.221(0.039)
MAR 0.619(0.014) 0.611(0.132) 0.431(0.075) 0.879(0.061) 0.555(0.074) 0.399(0.044)
NMAR 0.491(0.046) 0.557(0.115) 0.411(0.076) 0.688(0.059) 0.464(0.067) 0.368(0.071)

Table 4. Average (standard deviation) recall and precision when missing values mechanism is MCAR, MAR and NMAR.

that under the MAR assumption, which is a more re-
alistic assumption than MCAR, performance of the
estimators does not degrade dramatically when esti-
mating the support of the precision matrix. However,
estimated parameters are quite far from the true pa-
rameters. This could be improved by using a weighted
estimator for the sample covariance matrix (see, e.g.,
Robins et al., 1994). Second, it is important to es-
tablish sharp lower bounds for the estimation problem
from data with missing values, which should reflect de-
pendence on the proportion of observed entries γ (see
Lounici, 2012).
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